Efektivitas Penggunaan Artificial Intelligence (AI) Atau Kecerdasan Buatan Dalam Mendukung Profesionalisme Keperawatan: Tinjauan Literatur Sistematis
DOI:
https://doi.org/10.31004/riggs.v4i4.3364Keywords:
Artificial Intelligence, Efektivitas, Keperawatan, Profesionalisme, Tinjauan SistematisAbstract
Profesionalisme keperawatan menghadapi tantangan akibat meningkatnya beban kerja dan kekurangan tenaga kesehatan global. Kecerdasan Buatan (AI) hadir sebagai inovasi potensial untuk mendukung praktik keperawatan, namun efektivitas dan hambatannya perlu ditinjau secara sistematis. Penelitian ini bertujuan menilai efektivitas penggunaan AI dalam mendukung profesionalisme keperawatan, khususnya terkait keselamatan pasien, efisiensi alur kerja, dan kualitas dokumentasi. Tinjauan literatur sistematis dilakukan pada lima database (Scopus, ScienceDirect, PubMed, Oxford Academic, Statista) untuk publikasi Januari 2019–Desember 2024 menggunakan pedoman PRISMA. Dari 3.621 artikel yang teridentifikasi, 12 studi memenuhi kriteria inklusi dan dianalisis secara kualitatif. Hasil sintesis menunjukkan AI berperan signifikan dalam tiga aspek: (1) meningkatkan keselamatan pasien melalui deteksi dini perburukan kondisi, identifikasi sindrom klinis otomatis, serta pengurangan alarm fatigue; (2) mengoptimalkan efisiensi alur kerja dengan mengotomatisasi tinjauan rekam medis dan imputasi data; serta (3) memperbaiki kualitas dokumentasi dengan mengubah data naratif tidak terstruktur menjadi data terstruktur yang akurat dan dapat dianalisis. Namun, implementasi AI masih menghadapi hambatan sosio-teknis, seperti rendahnya kepercayaan staf, meningkatnya kecemasan, serta kesenjangan antara validasi teknis algoritma dengan bukti peningkatan luaran pasien di dunia nyata. Secara keseluruhan, AI memiliki potensi transformatif untuk memperkuat profesionalisme keperawatan melalui praktik berbasis bukti, efisiensi, dan peningkatan keselamatan pasien, dengan catatan keberhasilan implementasinya membutuhkan strategi manajemen perubahan yang efektif serta integrasi yang tepat ke dalam alur kerja klinis.
Downloads
References
T. Chen, M. Dredze, J. P. Weiner, L. Hernandez, J. Kimura, and H. Kharrazi, “Extraction of geriatric syndromes from electronic health record clinical notes: Assessment of statistical natural language processing methods,” JMIR Medical Informatics, vol. 7, no. 1, 2019.
A. Connell, G. Black, H. Montgomery, P. Martin, C. Nightingale, D. King, A. Karthikesalingam, C. Hughes, T. Back, K. Ayoub, M. Suleyman, G. Jones, J. Cross, S. Stanley, M. Emerson, C. Merrick, G. Rees, C. Laing, and R. Raine, “A qualitative evaluation of user experiences of a digitally enabled care pathway in secondary care,” Journal of Medical Internet Research, vol. 21, no. 7, 2019.
C. D’Ambrosia, H. Christensen, and E. Aronoff-Spencer, “Computing SARS-CoV-2 infection risk from symptoms, imaging, and test data: Diagnostic model development,” Journal of Medical Internet Research, vol. 22, no. 12, 2020.
S. Fu, H. Jia, M. Vassilaki, V. K. Keloth, Y. Dang, Y. Zhou, M. Garg, R. C. Petersen, J. St Sauver, S. Moon, L. Wang, A. Wen, F. Li, H. Xu, C. Tao, J. Fan, H. Liu, and S. Sohn, “FedFSA: Hybrid and federated framework for functional status ascertainment across institutions,” Journal of Biomedical Informatics, vol. 152, 2024.
https://doi.org/10.1016/j.jbi.2024.104623
P. Gupta, J. Saied Walker, L. Despins, D. Heise, J. Keller, M. Skubic, R. Yi, and G. J. Scott, “A semi-supervised approach to unobtrusively predict abnormality in breathing patterns using hydraulic bed sensor data in older adults aging in place,” Journal of Biomedical Informatics, vol. 147, 2023.
https://doi.org/10.1016/j.jbi.2023.104530
K. D. Mann, N. M. Good, F. Fatehi, S. Khanna, V. Campbell, R. Conway, C. Sullivan, A. Staib, C. Joyce, and D. Cook, “Predicting patient deterioration: A review of tools in the digital hospital setting,” Journal of Medical Internet Research, vol. 23, no. 9, 2021.
C. E. Mercer, S. Hargreaves, C. Hill, R. Turnbull, and K. Szczepura, “An exploration of factors involved in the roll out of a digital application in breast services: A case study approach,” Radiography, vol. 30, no. 2, pp. 666–672, 2024.
https://doi.org/10.1016/j.radi.2024.02.002
S. Sheikhalishahi, R. Miotto, J. T. Dudley, A. Lavelli, F. Rinaldi, and V. Osmani, “Natural language processing of clinical notes on chronic diseases: Systematic review,” JMIR Medical Informatics, vol. 7, no. 2, 2019.
S. F. Sung, Y. H. Hu, and C. Y. Chen, “Disambiguating clinical abbreviations by one-to-all classification: Algorithm development and validation study,” JMIR Medical Informatics, vol. 12, 2024.
X. Tang, X. Yang, J. Yuan, J. Yang, Q. Jin, H. Zhang, L. Zhao, and W. Guo, “Call for decision support for electrocardiographic alarm administration among neonatal intensive care unit staff: Multicenter, cross-sectional survey,” Journal of Medical Internet Research, vol. 26, 2024.
L. Teng, Z. Zhou, Y. Yang, J. Sun, Y. Dong, M. Zhu, and T. Wang, “Identifying central symptom clusters and correlates in patients with lung cancer post-chemotherapy: A network analysis,” Asia-Pacific Journal of Oncology Nursing, vol. 11, no. 4, 2024.
https://doi.org/10.1016/j.apjon.2024.100383
D. Xu, P. J. H. Hu, T. S. Huang, X. Fang, and C. C. Hsu, “A deep learning–based, unsupervised method to impute missing values in electronic health records for improved patient management,” Journal of Biomedical Informatics, vol. 111, 2020.
https://doi.org/10.1016/j.jbi.2020.103576
D. Borsboom, and A. O. Cramer, “Network analysis: An integrative approach to the structure of psychopathology,” Annual Review of Clinical Psychology, vol. 9, pp. 91–121, 2013.
https://doi.org/10.1146/annurev-clinpsy-050212-185608
F. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of information technology,” MIS Quarterly, vol. 13, no. 3, pp. 319–340, 1989.
https://doi.org/10.2307/249008
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
https://doi.org/10.1038/nature14539
A. Rogers, O. Kovaleva, and A. Rumshisky, “A primer on neural network models for natural language processing,” Journal of Artificial Intelligence Research, vol. 57, pp. 615–731, 2020.
https://doi.org/10.1613/jair.1.11030
S. Sendelbach, and M. Funk, “Alarm fatigue: A patient safety concern,” AACN Advanced Critical Care, vol. 24, no. 4, pp. 378–386, 2013.
https://doi.org/10.4037/NCI.0000000000000020
M. E. Smith, J. C. Chiovaro, M. O’Neil, D. Kansagara, A. R. Quiñones, M. Freeman, M. L. Motu’apuaka, and C. G. Slatore, “Early warning system scores for clinical deterioration in hospitalized patients: A systematic review,” Annals of the American Thoracic Society, vol. 11, no. 9, pp. 1454–1465, 2018.
https://doi.org/10.1513/AnnalsATS.201403-102OC
J. Sweller, “Cognitive load during problem solving: Effects on learning,” Cognitive Science, vol. 12, no. 2, pp. 257–285, 1988.
https://doi.org/10.1207/s15516709cog1202_4
D. Xu, P. J. H. Hu, T. S. Huang, X. Fang, and C. C. Hsu, “A deep learning-based, unsupervised method to impute missing values in electronic health records for improved patient management,” Artificial Intelligence in Medicine, vol. 110, p. 101962, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Riqza Alfaiz Zahran, Nita Fitria

This work is licensed under a Creative Commons Attribution 4.0 International License.


















