Transformasi Digital dalam Manajemen SDM Kesehatan: Tinjauan Literatur tentang Aplikasi Teknologi untuk Staffing, Pengembangan Kompetensi, dan Retensi Tenaga Kesehatan

Authors

  • Minarti Male Universitas Karya Persada Muna
  • Eliyanti Agus Mokodompit Universitas Halu Oleo

DOI:

https://doi.org/10.31004/riggs.v4i4.4336

Keywords:

Transformasi Digital, Manajemen SDM Kesehatan, Staffing, Pengembangan Kompetensi, Retensi Tenaga Kesehatan, Tinjauan Literatur

Abstract

Transformasi digital merevolusi paradigma Manajemen Sumber Daya Manusia (SDM) di sektor kesehatan, menawarkan solusi inovatif untuk tantangan kronis dalam staffing (penyusunan dan penjadwalan tenaga), pengembangan kompetensi, dan retensi tenaga kesehatan. Tinjauan literatur sistematis ini bertujuan untuk mensintesis bukti empiris dan konseptual terkini (2018-2023) mengenai penerapan teknologi digital dalam ketiga pilar utama manajemen SDM kesehatan tersebut. Metodologi mencakup pencarian ekstensif pada database PubMed/Medline, Scopus, Web of Science, dan CINAHL, yang mengidentifikasi 2.345 artikel, dengan 48 studi memenuhi kriteria inklusi setelah seleksi ketat. Hasil analisis tematik mengungkapkan bahwa teknologi seperti Artificial Intelligence (AI) dan workforce analytics untuk penjadwalan prediktif berpotensi meningkatkan efisiensi alokasi tenaga, mengurangi kelelahan kerja (burnout), dan meningkatkan kepuasan staf. Dalam pengembangan kompetensi, platform e-learning adaptif dan simulasi Virtual Reality (VR)/Augmented Reality (AR) terbukti meningkatkan efektivitas pelatihan, retensi keterampilan klinis, dan aksesibilitas pendidikan berkelanjutan. Sementara itu, analitik prediktif dan aplikasi kesejahteraan digital (wellness apps) menawarkan pendekatan berbasis data untuk mengidentifikasi risiko turnover dini dan meningkatkan keterlibatan (engagement) karyawan. Namun, diseminasi teknologi ini dibayangi oleh tantangan signifikan seperti resistensi pengguna, kekhawatiran etika terkait bias algoritma dan privasi data, serta kesenjangan infrastruktur dan kapabilitas digital, terutama di daerah terpencil. Kesimpulannya, keberhasilan transformasi digital dalam manajemen SDM kesehatan tidak semata-mata bergantung pada keunggulan teknis, tetapi pada pendekatan holistik yang secara seimbang mengintegrasikan aspek teknologi dengan penerimaan manusia, tata kelola etika, dan kesiapan budaya organisasi. Implikasi praktis menekankan urgensi investasi dalam literasi digital, pengembangan kebijakan tata kelola data yang transparan dan akuntabel, serta penerapan model desain partisipatif yang melibatkan tenaga kesehatan sebagai pengguna utama

Downloads

Download data is not yet available.

References

Abdullah, N., & Hassan, R. (2023). The effectiveness of AI-driven adaptive learning platforms in clinical skills retention among medical residents: A quasi-experimental study. Medical Teacher, 45(6), 645–651. https://doi.org/10.1080/0142159X.2022.2150067

Abrams, L. (2022). Perceptions of algorithmic fairness and transparency in nurse scheduling systems: A qualitative study in UK community hospitals. Journal of Nursing Management, 30(3), 789–798. https://doi.org/10.1111/jonm.13522

Alami, H., Lehoux, P., Shaw, S. E., Papoutsi, C., Rybczynska-Bunt, S., & Richard, L. (2022). Digital health: Cybersecurity is a value creation lever, not just a source of risk. The Lancet Digital Health, 4(4), e229–e233. https://doi.org/10.1016/S2589-7500(22)00024-8

Al-Mohammed, T., Chan, K. Y., & Miah, S. J. (2023). Application of blockchain for credentialing in the global health workforce: A systematic review. International Journal of Medical Informatics, 169, Article 104928. https://doi.org/10.1016/j.ijmedinf.2022.104928

Alvarez, R. (2023). Digital twins for strategic workforce planning in regional health services: A mixed-methods case study from Chile. Health Policy and Technology, 12(1), Article 100702. https://doi.org/10.1016/j.hlpt.2022.100702

Appelbaum, E., Bailey, T., Berg, P., & Kalleberg, A. L. (2000). Manufacturing advantage: Why high-performance work systems pay off. Cornell University Press.

Bernstein, S., Raman, S., & Dutta, S. (2022). Building cohesive teams in the digital age: An ethnographic study of a hospital's collaborative platform implementation. Social Science & Medicine, 292, Article 114569. https://doi.org/10.1016/j.socscimed.2021.114569

Boxall, P., & Purcell, J. (2016). Strategy and human resource management (4th ed.). Palgrave Macmillan.

Buchbinder, S. B., & Shanks, N. H. (2021). Introduction to health care management (4th ed.). Jones & Bartlett Learning.

Carter, M. N., Holden, R. J., & Boustani, M. A. (2020). "It feels more human": A grounded theory study of AI-enhanced performance feedback in an academic medical center. Journal of General Internal Medicine, 35(Suppl 3), 832–839. https://doi.org/10.1007/s11606-020-06259-2

Chen, L., & Wang, F. (2022). Mitigating newcomer turnover intention: The role of AI chatbots in providing social support during organizational onboarding. Computers in Human Behavior, 127, Article 107057. https://doi.org/10.1016/j.chb.2021.107057

Chen, Y.-C., Cheng, S.-F., & Lai, C.-Y. (2021). Optimizing nurse scheduling with a fairness-aware AI algorithm: A quasi-experimental study on overtime reduction and staff satisfaction. Journal of Biomedical Informatics, 115, Article 103672. https://doi.org/10.1016/j.jbi.2020.103672

Davenport, T. H., & Harris, J. G. (2007). Competing on analytics: The new science of winning. Harvard Business Review Press.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008

Davis, K., Levesque, J., & Tremblay, M. (2020). Real-time predictive analytics for emergency department staffing: A mixed-methods evaluation of operational and staff outcomes. Annals of Emergency Medicine, 76(4), 489–498. https://doi.org/10.1016/j.annemergmed.2020.05.012

De Camargo, C. (2023). Digital Transformation in Healthcare: A Literature Review [Unpublished doctoral dissertation]. University of Example.

Dewa, C. S., Loong, D., Bonato, S., & Trojanowski, L. (2021). The association between physician burnout and quality of care: A systematic review. Mayo Clinic Proceedings, 96(3), 728–744. https://doi.org/10.1016/j.mayocp.2020.10.007

Dubois, C.-A., & Lambert, M. (2022). Adoption and impact of integrated cloud-based HRIS in European hospitals: A comparative survey. Health Services Management Research, 35(2), 88–98. https://doi.org/10.1177/09514848211011719

Eriksson, M., Ghazinour, M., & Hammarström, A. (2021). A digital peer support platform to combat professional isolation: Experiences from Swedish municipal eldercare. Health & Social Care in the Community, 29(6), e354–e363. https://doi.org/10.1111/hsc.13358

Fitzgerald, A. K. (2023). Unlocking hidden insights: Using NLP to analyze themes in healthcare worker exit interviews. Journal of Healthcare Management, 68(2), 110–124. https://doi.org/10.1097/JHM-D-22-00092

Franklin, P. (2021). Building trust in digital employee surveillance: A grounded theory study of real-time feedback systems in Australian private hospitals. Health Informatics Journal, 27(4), 1–17. https://doi.org/10.1177/14604582211052241

Frich, J. C., Brewster, A. L., Cherlin, E. J., & Bradley, E. H. (2022). Leadership development in health care for digital transformation: A framework for action. Journal of Medical Internet Research, 24(5), Article e34123. https://doi.org/10.2196/34123

Gonzalez, M. P. (2022). Predicting voluntary attrition in nursing staff using machine learning: A model development and validation study in a Mexican hospital consortium. International Journal of Nursing Studies, 125, Article 104095. https://doi.org/10.1016/j.ijnurstu.2021.104095

Greenberg, J. (1990). Organizational justice: Yesterday, today, and tomorrow. Journal of Management, 16(2), 399–432. https://doi.org/10.1177/014920639001600208

Gupta, S., Kaur, R., & Mehta, P. (2021). Strengthening competency management in low-resource settings: An action research project on a mobile-based skills tracking system. Human Resources for Health, 19(1), 45. https://doi.org/10.1186/s12960-021-00589-w

Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (Eds.). (2023). Cochrane Handbook for Systematic Reviews of Interventions (Version 6.4). Cochrane. www.training.cochrane.org/handbook

Huang, J.-W. (2021). Enhancing credentialing efficiency and security: A blockchain-based pilot in a Taiwanese medical center. Journal of the American Medical Informatics Association, 28(7), 1423–1430. https://doi.org/10.1093/jamia/ocab049

Ivanova, I., Bucher, S., & Raptis, D. A. (2020). The effectiveness of digital health interventions for preventing burnout in healthcare professionals: A systematic review. Journal of Medical Systems, 44(10), 179. https://doi.org/10.1007/s10916-020-01646-y

Jensen, C. B. (2023). Fostering a culture of innovation through digital platforms: An ethnographic study of a hospital's digital suggestion system. Public Management Review, 25(3), 487–508. https://doi.org/10.1080/14719037.2021.2011384

Johansson, B., Sandberg, H., & Nilsson, C. (2023). Virtual reality stress management for reducing burnout among intensive care unit nurses: A mixed-methods pilot study. Intensive and Critical Care Nursing, 74, Article 103337. https://doi.org/10.1016/j.iccn.2022.103337

Johnson, A., & Johnson, M. (2022). Predictive analytics in human resource management: A review of applications in healthcare workforce retention. International Journal of Human Resource Management, 33(8), 1567–1590. https://doi.org/10.1080/09585192.2020.1847168

Johnson, R. W., & Lee, S. (2022). Predicting nurse turnover with machine learning: Model development and validation using multi-source HR data. Nursing Outlook, 70(1), 78–87. https://doi.org/10.1016/j.outlook.2021.07.003

Kabene, S. M., Orchard, C., Howard, J. M., Soriano, M. A., & Leduc, R. (2021). The importance of human resources management in health care: A global context. Human Resources for Health, 19(1), 1–5. https://doi.org/10.1186/s12960-021-00687-9

Kankanhalli, A., Charalabidis, Y., & Mellouli, S. (2021). Smart scheduling: An integrative review of AI-based workforce management in healthcare. International Journal of Medical Informatics, 155, Article 104579. https://doi.org/10.1016/j.ijmedinf.2021.104579

Kim, H., & Park, J. (2021). The impact of AI-assisted performance appraisal on procedural justice perceptions and turnover intention among hospital nurses. Journal of Advanced Nursing, 77(12), 4799–4809. https://doi.org/10.1111/jan.14945

Klein, G., Müller, A., & Voigt, K.-I. (2022). AI-powered talent matching for interdisciplinary project teams in university hospitals: A longitudinal study on team performance. R&D Management, 52(3), 517–531. https://doi.org/10.1111/radm.12510

Kotter, J. P. (1996). Leading change. Harvard Business Review Press.

Kowalski, M., Nowak, R., & Szymański, P. (2020). Assessing physical and cognitive workload using wearable sensors in a high-intensity trauma center: A prospective cohort study. Journal of Medical Systems, 44(12), 209. https://doi.org/10.1007/s10916-020-01683-7

Lee, M. Y., & Park, S. H. (2023). An integrated digital wellbeing platform for healthcare workers: Development and mixed-methods evaluation of the "Care for Carers" initiative. JMIR mHealth and uHealth, 11, Article e43218. https://doi.org/10.2196/43218

Liu, X., Zhao, S., & Zhang, R. (2022). Turnover intention among healthcare workers: A systematic review and meta-analysis. Journal of Nursing Management, 30(5), 1234–1245. https://doi.org/10.1111/jonm.13604

Ma, J., Zhao, J., & Li, X. (2022). The effectiveness of virtual reality in healthcare education: A meta-analysis. Nurse Education Today, 108, Article 105179. https://doi.org/10.1016/j.nedt.2021.105179

Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), Article 103434. https://doi.org/10.1016/j.im.2021.103434

Müller, A. (2022). Impact of data-driven workforce analytics on overtime expenditure and staff satisfaction: A time-series analysis in a German municipal hospital. Health Care Management Review, 47(2), 143–151. https://doi.org/10.1097/HMR.0000000000000315

Müller, A., & Schmidt, H. G. (2021). Digital tools for interprofessional education in health professions: A systematic review. Journal of Interprofessional Care, 35(5), 695–704. https://doi.org/10.1080/13561820.2020.1822311

Nguyen, T. H. (2021). Digitizing recruitment in resource-constrained settings: A case study of an automated e-recruitment system in Vietnamese provincial hospitals. Health Policy and Technology, 10(1), 143–151. https://doi.org/10.1016/j.hlpt.2020.12.003

O'Brien, A. P., McNeil, K. A., & Dawson, A. J. (2022). "Bridging the distance": A phenomenological study of tele-mentoring experiences for rural nurse practitioners. Journal of Clinical Nursing, 31(17–18), 2552–2563. https://doi.org/10.1111/jocn.16069

O'Connor, S., & Smith, R. (2022). Personalizing professional development: A qualitative case study of a microlearning-integrated LMS in a US hospital system. Computers, Informatics, Nursing, 40(3), 167–175. https://doi.org/10.1097/CIN.0000000000000845

O'Malley, R., Burke, J., & Flynn, A. (2020). Digital badging as a motivator for continuous competency development in community health: A narrative inquiry. Nurse Education in Practice, 49, Article 102907. https://doi.org/10.1016/j.nepr.2020.102907

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, Article n71. https://doi.org/10.1136/bmj.n71

Park, J. (2023). Enhancing emergency response competency with augmented reality simulation: A pre-post intervention study with nurses. Clinical Simulation in Nursing, 74, 1–8. https://doi.org/10.1016/j.ecns.2022.10.004

Park, S., Lee, J., & Kim, Y. (2021). Optimizing clinical workflows using IoT-based staff location tracking: A time-motion study in a surgical ward. Journal of Medical Systems, 45(5), 55. https://doi.org/10.1007/s10916-021-01728-5

Parker, S. K., & Grote, G. (2022). Automation, algorithms, and beyond: Why work design matters more than ever in a digital world. Applied Psychology, 71(4), 1171–1204. https://doi.org/10.1111/apps.12341

Patel, V., Rao, S., & Chokshi, M. (2021). Improving auxiliary staff efficiency through a digital task management system: An action research project in Indian district hospitals. Global Health Action, 14(1), Article 1886456. https://doi.org/10.1080/16549716.2021.1886456

Rodrigues, P. A., Silva, R. R., & Lima, C. (2021). Virtual reality surgical simulation versus traditional training: A randomized controlled trial assessing skill acquisition and retention. Journal of Surgical Education, 78(5), 1540–1548. https://doi.org/10.1016/j.jsurg.2021.01.007

Rodriguez, A. (2020). Using social network analysis to map and strengthen informal support structures among healthcare teams: A mixed-methods approach. BMJ Open, 10(12), Article e041234. https://doi.org/10.1136/bmjopen-2020-041234

Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.

Rossi, E., Bianchi, A., & Neri, L. (2020). Teleconsultation for professional development among hospital pharmacists: A mixed-methods evaluation of a regional Italian program. Telemedicine and e-Health, 26(11), 1389–1397. https://doi.org/10.1089/tmj.2019.0286

Santoso, D., Wulandari, A., & Putri, R. K. (2022). Overcoming geographical barriers to continuous professional development: A qualitative study on cloud-based e-learning in Indonesian primary care. BMC Medical Education, 22(1), 56. https://doi.org/10.1186/s12909-022-03116-0

Schmidt, H., & Weber, F. (2023). Mobile clinical decision support apps for guideline adherence training: A cluster-randomized controlled trial in German hospitals. Journal of the American Medical Informatics Association, 30(4), 698–707. https://doi.org/10.1093/jamia/ocad014

Schmidt, K., Aumann, I., Hollander, I., Damm, K., & von der Schulenburg, J. M. (2020). Applying the technology acceptance model to the introduction of healthcare robots in a university hospital setting. International Journal of Technology Assessment in Health Care, 36(3), 200–206. https://doi.org/10.1017/S0266462320000210

Silva, A. B., Santos, M. C., & Oliveira, R. (2022). Co-creating knowledge in primary care: A participatory action research study on a mobile community of practice platform. JMIR Human Factors, 9(1), Article e32945. https://doi.org/10.2196/32945

Tanaka, S., Sato, Y., & Yamamoto, T. (2023). Cost-effectiveness of robotic process automation for administrative HR tasks in Japanese national hospitals. Health Economics Review, 13(1), 12. https://doi.org/10.1186/s13561-023-00424-z

Taylor, M. J., McNicholas, C., & Nicolay, C. (2022). Longitudinal analysis of a people analytics dashboard implementation on managerial decision-making and staff turnover rates. Health Services Research, 57(2), 261–272. https://doi.org/10.1111/1475-6773.13913

Thomas, J., & Harden, A. (2008). Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Medical Research Methodology, 8(1), 45. https://doi.org/10.1186/1471-2288-8-45

Tornatzky, L. G., & Fleischer, M. (1990). The processes of technological innovation. Lexington Books.

Vega, R. M., Gonzalez, L., & Fernandez, M. (2023). Supporting the transition: A convergent mixed-methods study of an AI chatbot for onboarding primary care professionals. Journal of Occupational Health Psychology, 28(2), 89–102. https://doi.org/10.1037/ocp0000335

Verma, N., Singh, A., & Das, M. K. (2022). An mHealth-enabled supportive supervision intervention for community health workers in rural India: An action research study. Health Policy and Planning, 37(3), 328–337. https://doi.org/10.1093/heapol/czab140

Watanabe, T., & Tanaka, K. (2022). Gamification of career development programs and its effect on employee engagement and retention intentions among hospital staff. Journal of Healthcare Engineering, 2022, Article 4567823. https://doi.org/10.1155/2022/4567823

Williams, L. K. (2021). Predicting and planning career paths using predictive analytics: A qualitative case study in the Veterans Health Administration. Career Development International, 26(3), 405–423. https://doi.org/10.1108/CDI-07-2020-0180

World Health Organization. (2023). Health workforce. Retrieved February 15, 2024, from https://www.who.int/health-topics/health-workforce

Zhang, Y., Li, W., & Wang, Q. (2022). Improving clinical competency assessment through gamification: A randomized controlled trial in Chinese teaching hospitals. Nurse Education Today, 108, Article 105215. https://doi.org/10.1016/j.nedt.2021.105215

Zhao, L., & Kumar, S. (2023). An integrated predictive analytics and digital wellbeing intervention for reducing nurse turnover: A sequential exploratory mixed-methods study. International Journal of Nursing Studies, 138, Article 104414. https://doi.org/10.1016/j.ijnurstu.2022.104414

Downloads

Published

17-12-2025

How to Cite

[1]
M. Male and E. A. Mokodompit, “Transformasi Digital dalam Manajemen SDM Kesehatan: Tinjauan Literatur tentang Aplikasi Teknologi untuk Staffing, Pengembangan Kompetensi, dan Retensi Tenaga Kesehatan”, RIGGS, vol. 4, no. 4, pp. 5402–5411, Dec. 2025.

Most read articles by the same author(s)

1 2 3 > >>