Inovasi Manajemen Kinerja melalui Penggunaan Artificial Intelligence dalam Penilaian Karyawan

Authors

  • Nur Khojin Universitas Muhadi Setiabudi
  • Muhammad Syaifullloh Universitas Muhadi Setiabudi

DOI:

https://doi.org/10.31004/riggs.v4i2.476

Keywords:

Artificial Intelligence, Manajemen Kinerja,, Penilaian Karyawan, Otomatisasi, Analitik Prediktif, Pengembangan SDM

Abstract

Penelitian ini mengeksplorasi dampak transformatif Artificial Intelligence (AI) pada sistem penilaian kinerja karyawan dalam organisasi kontemporer. Melalui metodologi deskriptif kualitatif dengan pendekatan library research, artikel ini menganalisis bagaimana teknologi AI merevolusi kerangka manajemen kinerja tradisional. Penelitian ini mengkaji metode evaluasi kinerja berbasis AI, mengidentifikasi tantangan implementasi utama, dan mengusulkan pendekatan strategis bagi organisasi yang ingin meningkatkan sistem manajemen kinerja mereka. Temuan mengungkapkan bahwa integrasi AI dalam penilaian kinerja menawarkan keuntungan signifikan termasuk pengurangan bias, kemampuan umpan balik real-time, analisis kinerja prediktif, dan personalisasi pengembangan karyawan. Studi ini juga mengidentifikasi tantangan etis, privasi data, dan kesiapan organisasional yang perlu diatasi untuk implementasi AI yang sukses. Kesimpulannya, penerapan AI dalam manajemen kinerja mewakili pergeseran paradigma yang membutuhkan keseimbangan antara kapabilitas teknologi dan pertimbangan kemanusiaan untuk menciptakan sistem penilaian yang lebih efektif, adil, dan berpusat pada karyawan.

Downloads

Download data is not yet available.

References

Aguinis, H., Villamor, I., & Gabriel, K. P. (2020). Understanding employee responses to COVID-19: A behavioral corporate social responsibility perspective. Management Research, 18(4), 421-438.

Bank Mandiri. (2022). Annual Report 2022: Digital Transformation and Human Capital Development. PT Bank Mandiri (Persero) Tbk.

Cappelli, P., Tambe, P., & Yakubovich, V. (2020). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15-42.

Chen, L., & Cheng, J. (2022). Multi-source performance data analytics: A framework for continuous employee evaluation. International Journal of Human Resource Management, 33(5), 987-1012.

Cheng, M. M., Hackett, R. D., & Gupta, V. (2021). Artificial intelligence in performance management: A systematic review and future research agenda. Human Resource Management Review, 31(2), 100790.

Das, S., Rahman, N., & Pattnaik, P. K. (2023). Personalized learning pathways: AI-driven recommendations in employee development. International Journal of Training and Development, 27(1), 78-96.

DeNisi, A. S., & Murphy, K. R. (2017). Performance appraisal and performance management: 100 years of progress? Journal of Applied Psychology, 102(3), 421-433.

Global HR Analytics Report. (2023). Return on investment in HR analytics and AI implementation. HR Analytics Institute.

GoTo Group. (2023). Innovation Report 2023: Transforming work through technology. GoTo Group.

Habir, A. D., & Larasati, A. B. (2022). Cultural dimensions of performance management in Indonesia's digital economy. Journal of Indonesian Economy and Business, 37(1), 1-21.

Johnson, S. K., Garrison, L. L., & Broome, G. H. (2021). Reducing bias in performance evaluation: A field study of AI-augmented review processes. Academy of Management Journal, 64(3), 783-815.

Kaur, D., & Singh, H. (2023). Employee engagement in digital performance management: A longitudinal study. Journal of Organizational Behavior, 44(2), 215-237.

Kaur, J., Sharma, S. K., Kaur, P., & Sharma, R. (2020). Using GDPR for designing privacy enhanced-systems: A case of HR analytics. Computers & Security, 94, 101912.

Khan, M. A., & Iqbal, H. (2022). AI-driven feedback mechanisms and employee engagement: Evidence from service organizations. Human Resource Development Quarterly, 33(1), 73-95.

Lee, C. H., & Wong, K. Y. (2022). Predictive analytics for employee turnover: A machine learning approach. Expert Systems with Applications, 189, 116122.

Li, J., Wang, H., & Zheng, Z. (2020). Intelligent automation in human resources: Systematic literature review. Journal of Enterprise Information Management, 33(1), 54-76.

Malik, N., Tripathi, S. N., & Sharma, S. (2020). Algorithmic transparency in HR analytics: Ethical considerations and employee trust. International Journal of Human Resource Studies, 10(2), 135-154.

Morgan, R., & Bergman, M. (2020). The business impact of AI in performance management: A multi-industry analysis. Journal of Business Research, 118, 123-137.

Nocker, M., & Sena, V. (2019). Big data and human resources management: The rise of talent analytics. Social Sciences, 8(10), 273.

Pramudita, D., Yanuar, A. A., & Santoso, B. (2022). Digital transformation challenges in Indonesian human resource management. Jurnal Manajemen Indonesia, 22(2), 156-172.

Pulakos, E. D., Mueller-Hanson, R., & Arad, S. (2019). The evolution of performance management: Searching for value. Annual Review of Organizational Psychology and Organizational Behavior, 6, 249-271.

Raghavan, M., Barocas, S., Kleinberg, J., & Levy, K. (2020). Mitigating bias in algorithmic hiring: Evaluating claims and practices. In Conference on Fairness, Accountability, and Transparency (pp. 469-481).

Schleicher, D. J., Baumann, H. M., Sullivan, D. W., & Yim, J. (2018). Evaluating the effectiveness of performance management: A 30-year integrative conceptual review. Journal of Applied Psychology, 104(7), 851-887.

Setiawan, A., & Jati, H. (2023). Data protection compliance in AI-driven HR practices: Implications of Indonesia's Personal Data Protection Act. Jurnal Hukum Teknologi, 3(1), 25-42.

Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15-42.

Telkom Indonesia. (2023). Digital Transformation Report: Human Capital in the Digital Age. PT Telekomunikasi Indonesia Tbk.

Widyasari, M., Suryanto, S., & Prasetyo, Y. (2023). Adoption of artificial intelligence in Indonesian human resource management: A readiness assessment. Jurnal Aplikasi Manajemen, 21(2), 384-399.

Zhang, Y., Zhao, S., & Khan, M. S. (2022). Data quality in digital performance management: A study of accuracy and completeness. Human Resource Management Journal, 32(1), 217-236.

Zliobaite, I. (2018). Fairness-aware machine learning: A perspective. ArXiv Preprint ArXiv:1708.00754.

Downloads

Published

12-05-2025

How to Cite

[1]
N. Khojin and M. Syaifullloh, “Inovasi Manajemen Kinerja melalui Penggunaan Artificial Intelligence dalam Penilaian Karyawan”, RIGGS, vol. 4, no. 2, pp. 309–317, May 2025.

Issue

Section

Articles