Transformasi Administrasi Publik Di Era Digital: Inovasi Dan Tantangan
DOI:
https://doi.org/10.31004/riggs.v4i1.433Keywords:
Transformasi Administrasi Publik, Digital, Inovasi dan TantanganAbstract
Seiring dengan pesatnya perkembangan teknologi informasi dan komunikasi, transformasi administrasi publik di era digital merupakan fenomena yang tidak dapat dihindari. Pemerintah di seluruh dunia harus memberikan layanan publik yang efisien dan transparan serta mampu menyesuaikan diri dengan perubahan kebutuhan masyarakat yang cepat dan berubah. Digitalisasi administrasi publik adalah solusi strategis untuk mengatasi keterlambatan birokrasi, kompleksitas data, dan tuntutan keterbukaan informasi. Namun, di balik peluang tersebut, terdapat tantangan besar terkait infrastruktur, kompetensi SDM, regulasi, dan masalah keamanan siber. Untuk memahami berbagai kesulitan yang terkait dengan inovasi digital, penelitian ini menjadi penting. Penelitian ini bertujuan untuk mengidentifikasi jenis inovasi digital yang digunakan dalam administrasi publik dan menganalisis tantangan yang dihadapi selama transformasi ini. Selain itu, penelitian ini juga bertujuan untuk mengevaluasi sejauh mana penerapan digitalisasi berdampak terhadap peningkatan kualitas pelayanan publik. Metode penelitian ini adalah kualitatif deskriptif, menggunakan teknik studi pustaka dan analisis konten. Data yang dikumpulkan dari dokumen resmi pemerintah, laporan lembaga internasional, dan artikel ilmiah yang relevan dianalisis menggunakan teknik tematik untuk menemukan pola inovasi dan hambatan. Hasil penelitian menunjukkan bahwa digitalisasi administrasi publik telah membawa banyak perubahan, termasuk sistem informasi terintegrasi, layanan daring (e-service), dan penggunaan kecerdasan buatan dalam proses pengambilan keputusan. Namun demikian, ada beberapa masalah yang dihadapi. Ini termasuk perbedaan digital di antara wilayah, kekhawatiran budaya birokrasi, kebutuhan akan peraturan yang lebih fleksibel, dan pelatihan digital yang menyeluruh untuk aparat negara. Ketidakmampuan untuk mempercepat reformasi birokrasi dan meningkatkan kualitas pelayanan publik adalah transformasi administrasi publik di era digital.
Downloads
References
Chen, Q. (2020). Joint trajectory and resource optimization for UAV-enabled relaying systems. IEEE Access, 8, 24108–24119. Scopus. https://doi.org/10.1109/ACCESS.2020.2970439
Cheng, S., Wang, W.-Q., & So, H. C. (2017). MIMO radar OFDM chirp waveform diversity design with sparse modeling and joint optimization. Multidimensional Systems and Signal Processing, 28(1), 237–249. Scopus. https://doi.org/10.1007/s11045-015-0340-9
Ding, W., Yang, F., Dai, W., & Song, J. (2015). Time-frequency joint sparse channel estimation for MIMO-OFDM systems. IEEE Communications Letters, 19(1), 58–61. Scopus. https://doi.org/10.1109/LCOMM.2014.2372006
Ding, W., Yang, F., Liu, S., Wang, X., & Song, J. (2016). Nonorthogonal Time-Frequency Training-Sequence-Based CSI Acquisition for MIMO Systems. IEEE Transactions on Vehicular Technology, 65(7), 5714–5719. Scopus. https://doi.org/10.1109/TVT.2015.2463716
Gong, Z., Wu, L., Zhang, Z., Dang, J., Zhu, B., Jiang, H., & Li, G. Y. (2021). Joint TOA and DOA estimation with CFO compensation using large-scale array. IEEE Transactions on Signal Processing, 69, 4204–4218. Scopus. https://doi.org/10.1109/TSP.2021.3095722
Hoang, T. D., Le, L. B., & Le-Ngoc, T. (2016). Joint prioritized link scheduling and resource allocation for OFDMA-based wireless networks. IEEE Int. Conf. Commun., ICC. 2016 IEEE International Conference on Communications, ICC 2016. Scopus. https://doi.org/10.1109/ICC.2016.7511328
Hu, T., Wang, Y., Liao, X., & Zhang, J. (2019). Vortex Beam Selection for A2G-RV Wireless Communications. Int. Symp. Antennas Propag., ISAP - Proc. 2019 International Symposium on Antennas and Propagation, ISAP 2019 - Proceedings. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078982173&partnerID=40&md5=23c746edb55593c769c14528b3dfba69
Jia, G.-Q., Chen, S.-J., Ji, X.-H., & Chen, C. (2015). Training sequence design for coordination on multiple point system. Journal of Donghua University (English Edition), 32(2), 337–340. Scopus.
Katterbauer, K., & Al Shehri, A. (2022). Smart MIMO-OFDM Wireless Communication Frameworks for Subsurface Wireless Sensor. Soc. Pet. Eng. - SPE Asia Pac. Oil Gas Conf. Exhib., APOG. Society of Petroleum Engineers - SPE Asia Pacific Oil and Gas Conference and Exhibition 2022, APOG 2022. Scopus. https://doi.org/10.2118/210750-MS
Li, H., Zhao, Y., Cheng, Z., & Feng, D.-Z. (2016). Orthogonal frequency division multiplexing linear frequency modulation signal design with optimised pulse compression property of spatial synthesised signals. IET Radar, Sonar and Navigation, 10(7), 1319–1326. Scopus. https://doi.org/10.1049/iet-rsn.2015.0642
Maatouk, A., Hajri, S. E., Assaad, M., & Sari, H. (2019). On Optimal Scheduling for Joint Spatial Division and Multiplexing Approach in FDD Massive MIMO. IEEE Transactions on Signal Processing, 67(4), 1006–1021. Scopus. https://doi.org/10.1109/TSP.2018.2886163
Majumder, M., Saxena, H., Srivastava, S., & Jagannatham, A. K. (2021). Optimal Bit Allocation-Based Hybrid Precoder-Combiner Design Techniques for mmWave MIMO-OFDM Systems. IEEE Access, 9, 54109–54125. Scopus. https://doi.org/10.1109/ACCESS.2021.3070921
Muneer, P., & Sameer, S. M. (2015). Pilot-aided joint estimation of doubly selective channel and carrier frequency offsets in OFDMA uplink with high-mobility users. IEEE Transactions on Vehicular Technology, 64(1), 411–417. Scopus. https://doi.org/10.1109/TVT.2014.2317835
Muneer, P., & Sameer, S. M. (2017). Joint Estimation of Doubly Selective Channels and Carrier Frequency Offsets in High Mobility MIMO-OFDMA Uplink. Wireless Personal Communications, 95(4), 4113–4130. Scopus. https://doi.org/10.1007/s11277-017-4050-5
Myronchuk, O. Y., Shpylka, A. A., & Zhuk, S. Y. (2020). Two-Stage Method for Joint Estimation of Information Symbols and Channel Frequency Response in OFDM Communication Systems. Radioelectronics and Communications Systems, 63(8), 418–429. Scopus. https://doi.org/10.3103/S073527272008004X
Qi, C., Wu, L., Huang, Y., & Nallanathan, A. (2015). Joint Design of Pilot Power and Pilot Pattern for Sparse Cognitive Radio Systems. IEEE Transactions on Vehicular Technology, 64(11), 5384–5390. Scopus. https://doi.org/10.1109/TVT.2014.2374692
Qian, C., Xiong, Q., Yu, B., & Sun, C. (2017). Low complexity detection algorithm for low PAPR interleaving based NoMA schemes. IEEE Veh Technol Conf, 2017-September, 1–5. Scopus. https://doi.org/10.1109/VTCFall.2017.8288407
Salaün, L., Coupechoux, M., & Chen, C. S. (2019). Weighted Sum-Rate Maximization in Multi-Carrier NOMA with Cellular Power Constraint. Proc IEEE INFOCOM, 2019-April, 451–459. Scopus. https://doi.org/10.1109/INFOCOM.2019.8737495
Shen, W., Dai, L., Gao, Z., & Wang, Z. (2015). Joint CSIT acquisition based on low-rank matrix recovery for FDD massive MIMO systems. Proc IEEE INFOCOM, 2015-August, 83–84. Scopus. https://doi.org/10.1109/INFCOMW.2015.7179354
Shen, W., Dai, L., Shim, B., Mumtaz, S., & Wang, Z. (2015). Joint CSIT acquisition based on low-rank matrix completion for FDD massive MIMO systems. IEEE Communications Letters, 19(12), 2178–2181. Scopus. https://doi.org/10.1109/LCOMM.2015.2492960
Siudek, M., Małek, K., Pollo, A., Krakowski, T., Iovino, A., Scodeggio, M., Moutard, T., Zamorani, G., Guzzo, L., Garilli, B., Granett, B. R., Bolzonella, M., De La Torre, S., Abbas, U., Adami, C., Bottini, D., Cappi, A., Cucciati, O., Davidzon, I., … Takeuchi, T. T. (2018). The VIMOS Public Extragalactic Redshift Survey (VIPERS): The complexity of galaxy populations at 0.4 < z < 1.3 revealed with unsupervised machine-learning algorithms. Astronomy and Astrophysics, 617. Scopus. https://doi.org/10.1051/0004-6361/201832784
Sun, S.-Y., Hu, Y.-L., Chen, H.-H., & Meng, W.-X. (2016). Joint Pre-Equalization and Adaptive Combining for CC-CDMA Systems Over Asynchronous Frequency-Selective Fading Channels. IEEE Transactions on Vehicular Technology, 65(7), 5175–5184. Scopus. https://doi.org/10.1109/TVT.2015.2467967
Tiwari, S., & Das, S. S. (2018). Low-Complexity Joint-MMSE GFDM Receiver. IEEE Transactions on Communications, 66(4), 1661–1674. Scopus. https://doi.org/10.1109/TCOMM.2017.2780854
Turan, N., Koller, M., Rizzello, V., Fesl, B., Bazzi, S., Xu, W., & Utschick, W. (2021). On Distributional Invariances between Downlink and Uplink MIMO Channels. WSA - Int. ITG Workshop Smart Antennas, 47–52. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124524330&partnerID=40&md5=39411c06c9002cd583d3849d75929114
Wang, X., Zhang, Z., Long, K., & Zhang, X.-D. (2015). Joint group power allocation and prebeamforming for joint spatial-division multiplexing in multiuser massive MIMO systems. ICASSP IEEE Int Conf Acoust Speech Signal Process Proc, 2015-August, 2934–2938. Scopus. https://doi.org/10.1109/ICASSP.2015.7178508
Wang, Z., Li, Y., & Yao, Y.-A. (2018). Motion and path planning of a novel multi-mode mobile parallel robot based on chessboard-shaped grid division. Industrial Robot, 45(3), 390–400. Scopus. https://doi.org/10.1108/IR-01-2018-0001
Wu, M., & Hao, C. (2022). Super-Resolution TOA and AOA Estimation for OFDM Radar Systems Based on Compressed Sensing. IEEE Transactions on Aerospace and Electronic Systems, 58(6), 5730–5740. Scopus. https://doi.org/10.1109/TAES.2022.3178393
Xu, G., Zhang, B., Chen, J., & Hong, W. (2022). Structured Low-Rank and Sparse Method for ISAR Imaging With 2-D Compressive Sampling. IEEE Transactions on Geoscience and Remote Sensing, 60. Scopus. https://doi.org/10.1109/TGRS.2022.3221971
Zhidkov, S. V. (2017). Orthogonal transform multiplexing with memoryless nonlinearity: A possible alternative to traditional coded-modulation schemes. Int. Cong. Ultra Mod.Telecommun. Control Syst. Workshops, 2017-November, 209–214. Scopus. https://doi.org/10.1109/ICUMT.2017.8255159
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Amas Mashudin

This work is licensed under a Creative Commons Attribution 4.0 International License.


















