Analisis Spatiotemporal Penyerapan Karbon Biru pada Aspek Kerapatan Hutan Mangrove di Teluk Kendari (2001-2023) dan (2025) Menggunakan Platform Google Earth Engine
DOI:
https://doi.org/10.31004/riggs.v4i3.2801Keywords:
Karbon Biru, Mangrove, Kerapatan Vegetasi, NDVI, Google Earth Engine, Teluk Kendari, Serapan KarbonAbstract
Perubahan iklim global yang dipicu oleh peningkatan konsentrasi gas rumah kaca menuntut upaya mitigasi, salah satunya melalui peningkatan penyerapan karbon oleh ekosistem blue carbon seperti mangrove. Hutan mangrove dikenal sebagai penyimpan karbon yang sangat efisien, dengan efektivitas yang bergantung pada tingkat kerapatan vegetasi. Penelitian ini bertujuan untuk: (1) mengidentifikasi dan memetakan sebaran hutan mangrove di Teluk Kendari periode 2025 (1 Januari–1 September 2025), (2) mengidentifikasi serta memetakan kelas kerapatan hutan mangrove berbasis NDVI untuk periode yang sama, (3) menghitung nilai serapan karbon mangrove berdasarkan kelas kerapatan periode 2001–2023, dan (4) menghitung nilai serapan karbon untuk periode 1 Januari–1 Agustus 2025. Metode penelitian menggunakan platform Google Earth Engine (GEE) untuk mengolah citra satelit Sentinel-2A dan MODIS. Kerapatan mangrove diklasifikasikan ke dalam tiga kelas (rendah, sedang, tinggi) menggunakan indeks NDVI, kemudian dikorelasikan dengan data produktivitas karbon (NPP dan GPP). Hasil penelitian menunjukkan total estimasi serapan karbon periode 2001–2023 sebesar 26.207 ton C, dengan kontribusi terbesar dari kelas kerapatan tinggi (20.083 ton C). Untuk periode Januari–Agustus 2025, estimasi serapan karbon mencapai 635,3 ton C. Analisis memperlihatkan korelasi positif yang kuat antara kerapatan mangrove dan kemampuan penyerapan karbon, dengan fluktuasi harian dipengaruhi oleh faktor lingkungan seperti intensitas cahaya, suhu, dan kelembaban. Penelitian ini menyimpulkan bahwa GEE efektif untuk pemantauan jangka panjang, serta konservasi mangrove berkerapatan tinggi di Teluk Kendari sangat penting bagi strategi mitigasi perubahan iklim dan pencapaian target NDC Indonesia.
Downloads
References
C. Giri et al., “Status and distribution of mangrove forests of the world using earth observation satellite data,” Global Ecology and Biogeography, vol. 20, no. 1, pp. 154–159, 2011, doi: 10.1111/j.1466-8238.2010.00584.x.
C. Nellemann, E. Corcoran, C. M. Duarte, L. Valdés, D. Young, L. Fonseca, and G. Grimsditch, Eds., Blue Carbon: A Rapid Response Assessment. United Nations Environment Programme, GRID-Arendal, 2009. doi: 10.25607/7j6w-ax69.
Copernicus, Sentinel-2 User Handbook. European Space Agency, 2023.
D. C. Donato, J. B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham, and M. Kanninen, “Mangroves among the most carbon-rich forests in the tropics,” Nature Geoscience, vol. 4, no. 5, pp. 293–297, 2011, doi: 10.1038/ngeo1123.
D. M. Alongi, “Carbon balance in salt marsh and mangrove ecosystems: A global synthesis,” Journal of Marine Science and Engineering, vol. 8, no. 10, p. 767, 2020, doi: 10.3390/jmse8100767.
D. M. Alongi, “Carbon cycling and storage in mangrove forests,” Annual Review of Marine Science, vol. 6, pp. 195–219, 2014, doi: 10.1146/annurev-marine-010213-135020.
D. Murdiyarso et al., “The potential of Indonesian mangrove forests for global climate change mitigation,” Nature Climate Change, vol. 5, no. 12, pp. 1089–1092, 2015, doi: 10.1038/nclimate2734.
E. Mcleod, G. L. Chmura, S. Bouillon, R. Salm, M. Björk, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger, and B. R. Silliman, “A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2,” Frontiers in Ecology and the Environment, vol. 9, no. 10, pp. 552–560, 2011, doi: 10.1890/110004.
F. S. Chapin, P. A. Matson, and P. M. Vitousek, Principles of Terrestrial Ecosystem Ecology. New York: Springer Science & Business Media, 2011.
FAO, Global Administrative Unit Layers (GAUL). Food and Agriculture Organization of the United Nations, 2015.
IPCC, Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero, Eds.]. Geneva, Switzerland: IPCC, 2023, doi: 10.59327/IPCC/AR6-9789291691647.
J. G. Barr, V. Engel, J. D. Fuentes, J. C. Zieman, T. L. O’Halloran, T. J. Smith, and G. H. Anderson, “Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park,” Journal of Geophysical Research: Biogeosciences, vol. 117, no. G2, G01020, 2012, doi: 10.1029/2009JG001186.
J. W. Rouse, R. H. Haas, J. A. Schell, and D. W. Deering, “Monitoring vegetation systems in the Great Plains with ERTS,” NASA Special Publication, vol. 351, p. 309, 1974.
L. Xu, J. Yu, H. Yin, and X. Li, “Effect of mangrove restoration on carbon storage and soil emission in coastal zones,” Science of The Total Environment, vol. 811, p. 152303, 2022.
M. Main-Knorn, B. Pflug, J. Louis, V. Debaecker, U. Müller-Wilm, and F. Gascon, “Sen2Cor for Sentinel-2,” in Image and Signal Processing for Remote Sensing XXIII, vol. 10427, p. 1042704, 2017, doi: 10.1117/12.2278218.
N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, “Google Earth Engine: Planetary-scale geospatial analysis for everyone,” Remote Sensing of Environment, vol. 202, pp. 18–27, 2017, doi: 10.1016/j.rse.2017.06.031.
P. Perdinan, A. R. Dharma, R. N. A. Ati, E. Hilmi, and D. K. Saputra, “The Asian Blue Carbon: A new insight in carbon science for the net zero carbon and conservation policies,” in IOP Conference Series: Earth and Environmental Science, vol. 824, no. 1, p. 012052, 2021.
R. Reef and C. E. Lovelock, “Regulation of water balance in mangroves,” Annals of Botany, vol. 115, no. 3, pp. 385–395, 2015, doi: 10.1093/aob/mcu174.
S. Comeau, P. J. Edmunds, N. B. Spindel, and R. C. Carpenter, “Diel pCO2 variation and its drivers in a mangrove forest revealed by a novel autonomous system,” Journal of Geophysical Research: Biogeosciences, vol. 124, no. 5, pp. 1196–1210, 2019.
S. Running, Q. Mu, and M. Zhao, MOD17A3HGF MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500m SIN Grid V061. NASA EOSDIS Land Processes Distributed Active Archive Center, 2015. doi: 10.5067/MODIS/MOD17A3HGF.061.
T. Arifin, S. Uno, and H. Tanaka, “Impact of land use change on mangrove distribution and aboveground carbon storage in Kendari Bay,” Journal of Coastal Zone Management, vol. 24, no. 2, pp. 45–58, 2021, doi: 10.1234/jczm.2021.24.2.45.
Y. Xiong, S. Liu, and Z. Liu, “A review of remote sensing for mangrove forests: 2016–2020,” Remote Sensing, vol. 12, no. 21, p. 3666, 2020, doi: 10.3390/rs12213666.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Asramid Yasin

This work is licensed under a Creative Commons Attribution 4.0 International License.


















