Dice Similarity and TF-IDF for New Student Admissions Chatbot


  • Muhammad Riko Anshori Prasetya Information System, Sains and Technology, Sari Mulia University
  • Arif Mudi Priyatno Department Digital Bussiness, Faculty of Economics and Business, Pahlawan Tuanku Tambusai University




costumer service, nlp, chatbot, dice similiarity, tf-idf


CS is one of the most important functions of any client-related organization, whether a business or a school (customer service). Notably from the committee responsible for student selection, CS, on the other hand, has a very limited capacity to be handled by humans, which can reduce university satisfaction. Therefore, we require technological assistance, which in this case takes the form of an AI-based chatbot. The objective of this study is to design and develop a chatbot system utilizing NLP (natural language processing) to aid the CS of the new student admissions committee at Pahlawan Tuanku Tambusai University in answering questions from prospective new students. The employed method is dice similarity weighted by TFIDF. The results of the conducted tests indicated that the recall rate was 100 percent and the precision reached 76.92 percent. The evaluation results indicate that the chatbot can effectively respond to questions from prospective students.


Download data is not yet available.


S. Adam and E. Lulianthy, “Frequenly Ask Question (FAQ) Chatbot for New Student Admission System Using Natural Language Processing at Politeknik Aisyiyah Pontianak,” Jtksi, vol. 04, no. 03, 2021.

D. S. Hormansyah and Y . P . Utama, “Aplikasi Chatbot Berbasis Web Pada Sistem Informasi Layanan Publik Kesehatan Di Malang Dengan Menggunakan Metode Tf- Idf,” J. Inform. Polinema, vol. 4, no. 3, p. 224, 2018, doi: 10.33795/jip.v4i3.211.

H. Agus Santoso et al., “Dinus Intelligent Assistance (DINA) Chatbot for University Admission Services,” Proc. - 2018 Int. Semin. Appl. Technol. Inf. Commun. Creat. Technol. Hum. Life, iSemantic 2018, pp. 417–423, 2018, doi: 10.1109/ISEMANTIC.2018.8549797.

E. Elshan, N. Zierau, C. Engel, A. Janson, and J. M. Leimeister, Understanding the Design Elements Affecting User Acceptance of Intelligent Agents: Past, Present and Future, no. 0123456789. Springer US, 2022. doi: 10.1007/s10796-021-10230-9.

T. wahyuningsih, “Text Mining an Automatic Short Answer Grading (ASAG), Comparison of Three Methods of Cosine Similarity, Jaccard Similarity and Dice’s Coefficient,” J. Appl. Data Sci., vol. 2, no. 2, pp. 45–54, 2021, doi: 10.47738/jads.v2i2.31.

S. Purwaningrum, A. Susanto, and ..., “Comparation of Dice Similarity and Jaccard Coefficience Against Winnowing Algorithm For Similarity Detection of Indonesian Text Documents,” J. Appl. ..., vol. 6, no. 1, pp. 10–22, 2021.

A. F. Shobirin, D. Puspitasari, and A. Prasetyo, “Aplikasi Chatbot untuk Reservasi Pijat Bayi dengan Metode Cosine Similarity,” in Seminar Informatika Aplikatif Polinema, 2020, pp. 150–156.

P . Sitikhu, K. Pahi, P . Thapa, and S. Shakya, “A Comparison of Semantic Similarity Methods for Maximum Human Interpretability,” Int. Conf. Artif. Intell. Transform. Bus. Soc. AITB 2019, vol. 1, pp. 1–4, 2019, doi: 10.1109/AITB48515.2019.8947433.

A. M. Priyatno, F. M. Putra, P. Cholidhazia, and L. Ningsih, “Combination of extraction features based on texture and colour feature for beef and pork classification,” J. Phys. Conf. Ser., vol. 1563, no. 1, p. 012007, Jun. 2020, doi: 10.1088/1742-6596/1563/1/012007.

A. M. Priyatno, “Spammer Detection Based on Account, Tweet, and Community Activity on Twitter,” J. Ilmu Komput. dan Inf., vol. 13, no. 2, pp. 97–107, Jul. 2020, doi: 10.21609/jiki.v13i2.871.

A. M. Priyatno, M. M. Muttaqi, F. Syuhada, and A. Z. Arifin, “Deteksi bot spammer twitter berbasis time interval entropy dan global vectors for word representations tweet’s hashtag,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 5, no. 1, pp. 37–46, Jan. 2019, doi: 10.26594/register.v5i1.1382.




How to Cite

M. R. A. Prasetya and A. M. Priyatno, “Dice Similarity and TF-IDF for New Student Admissions Chatbot”, RIGGS, vol. 1, no. 1, pp. 13–18, Jul. 2022.