Driver Predicting Behavior Based on Accelerometer and Gyroscope Sensors with K-Means Algorithm Method
DOI:
https://doi.org/10.31004/riggs.v2i1.29Keywords:
Accelerometer, Gyroscope, Sensor, K-Means Algorithm, PredictionAbstract
The transportation with an increasing population level in Indonesia will also affect the smoothness of traffic. However, with the existence of transportation that is owned by someone, it is often misused in driving. Aggressive driving behavior is a major factor in traffic accidents. As reported AAA Foundation for Traffic Safety, 106,727 dangerous accidents – 55.7 percent of the over past four year period involved drivers engaging in one or more acts of aggressive driving. Therefore, to predict driver behavior, the K-Means algorithm used the Orange Application. Using the driver behavior dataset that has been recorded with Accelerometer and Gyroscope Sensor-based applications, the results obtained where the k value is the number of cluster 1 there are 814 items, cluster 2 has 997 items, cluster 3 has 1273 items. From this test, it was found that proportion of predicted driver behavior with Aggressive qualifications was 96.4%, Normal was 92.2% and from driver behavior with Low qualifications was 74.3%. The accuracy rate of research using the K-Means algorithm to determine predictions is 0.861 or 86.1%. The results of predictions can help prevent accidents or other risks that will occur in the future.
Downloads
References
R. Nugraha, “Menurut Studi, Orang yang Mengemudi Lambat Itu Juga Berbahaya dan Lebih Banyak Sebabkan Kematian,” Hai Grid, Jan. 11, 2020. https://hai.grid.id/read/071983451/menurut-studi-orang-yang-mengemudi-lambat-itu-juga-berbahaya-dan-lebih-banyak-sebabkan-kematian?page=all (accessed Jan. 10, 2023).
I. Cojocaru and S. Popescu, “Driving Behavior,” Craiova, Dolj, Rumania, May 2022. Accessed: Jan. 10, 2023. [Online]. Available: https://www.kaggle.com/datasets/outofskills/driving-behavior
A. Larasati, R. V. H. Ginardi, and Sarwosri, “Aplikasi Scoring Perilaku Pengemudi Menggunakan Sensor Fusi,” Jurnal Teknik ITS, vol. 7, no. 2, pp. 1–7, Aug. 2018.
Y. Oktopianto, S. Shofiah, F. A. Rokhman, K. P. Wijayanthi, and E. Krisdayanti, “Analisis DaerahRawan Kecelakaan(Black Site)Dan Titik Rawan Kecelakaan (Black Spot)Provinsi Lampung,” Borneo Engineering: Jurnal Teknik Sipil, vol. 5, no. 1, pp. 40–51, Apr. 2021.
M. Abadi and A. Saleh, “1Rancang Bangun Alat Pengukur Langkah Kaki dengan Sensor Accelerometer dan Fasilitas Komunikasi Wireless 2,4 GHz,” Center for Open Science, pp. 1–6, Aug. 2021.
Immersa Lab, “Pengertian Gyrscope Dan Cara Kerjanya,” Immersa Lab, Feb. 07, 2018. https://www.immersalab.com/pengertian-gyroscope-dan-cara-kerjanya.htm/ (accessed Jan. 10, 2023).
H. Achmad and Wahyudi, “Rancang Bangun Inertial Measurement Unit Sebagai Sistem Monitoring Kendaraan Bergerak Berbasis Sensor Accelerometer dan Gyroscope,” Jurnal Rekayasa Elektrika, vol. 9, no. 4, pp. 187–194, Oct. 2011.
T. Perkasa and H. H. Rachmat, “Perancangan Alat Ukur Sudut Tekuk Lutut Wireless menggunakan Sensor Gyroscope berbasis ATMega 328 dan ATMega 2560,” Jurnal ELKOMIKA, vol. 5, no. 1, pp. 30–47, Jun. 2017.
Sugiyono, Metode Penelitian Kualitatif, Kualitatif dan R&D, 28th ed. Bandung: CV. Alfabeta, 2018.
M. S. Zain, “Data Mining Dengan Metode K-Means Untuk Pengelompokan Mahasiswa Yang Mengunjungi Perpustakaan Berdasarkan Data Kunjungan Dan IPK,” UPI YPTK Jurnal EKOBISTEK, pp. 1–16, Jan. 2018.
T. H. Sardar and Z. Ansari, “An analysis of MapReduce efficiency in document clustering using parallel K-means algorithm,” Future Computing and Informatics Journal, vol. 3, no. 2, pp. 200–209, May 2018, Accessed: Jan. 10, 2023. [Online]. Available: https://digitalcommons.aaru.edu.jo/fcij/
B. Harahap, “Penerapan Algoritma K-Means Untuk Menentukan Bahan Bangunan Laris (Studi Kasus Pada UD. Toko Bangunan YD Indarung),” ReadyStar, vol. 2, no. 1, pp. 394–403, Nov. 2019.
B. Bangoria, N. Mankad, and V. Pambhar, “A Survey on Efficient Enhanced K-Means Clustering Algorithm,” International Journal for Scientific Research & Development (IJSRD), vol. 1, no. 9, Dec. 2013, Accessed: Dec. 21, 2022. [Online]. Available: https://ijsrd.com/Article.php?manuscript=IJSRDV1I9016
A. Agrawal and H. Gupta, “Global K-Means (GKM) Clustering Algorithm: A Survey,” Int J Comput Appl, vol. 79, no. 2, pp. 20–24, Oct. 2013.
K. Fatmawati and A. P. Windarto, “Data Mining: Penerapan RapidMiner Dengan K-Means Clusteer Pada Daerah Terjangkit Demam Berdarah Dengue (DBD) Berdasarkan Provinsi,” CESS (Journal of Computer Engineering System and Science), vol. 3, no. 2, pp. 173–178, Jul. 2018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Michael Sitorus, Melisa Melisa, Desty Herninda
This work is licensed under a Creative Commons Attribution 4.0 International License.