Smart Service Design in Urban Rail: AI-Enhanced Blueprint, Digital Servicescape, and Passenger Experience at Jabodebek LRT Jatimulya Station

Authors

  • Lia Siti Julaeha Universitas Ary Ginanjar Indonesia
  • Irwan Riyandi Universitas Ary Ginanjar Indonesia
  • Mohammad Dewa Lintang Umbaran Universitas Ary Ginanjar Indonesia

DOI:

https://doi.org/10.31004/riggs.v4i3.2386

Keywords:

AI-Enhanced Service Blueprint, Digital Servicescape, Passenger Experience, Smart Mobility, Jabodebek LRT

Abstract

Urban rail systems are increasingly positioned as vital components of sustainable mobility, enabling modal shifts from private to public transport while reducing congestion and fostering urban growth. In Indonesia, the Jabodebek Light Rail Transit (LRT) represents a flagship project to modernize metropolitan transportation, yet its success depends not only on infrastructure but also on the quality of service design at the station level, where passengers evaluate safety, reliability, and comfort. Jatimulya Station, as a type-A terminal in the Bekasi corridor, highlights persistent challenges such as ticketing inefficiencies, overcrowding, inadequate wayfinding, and accessibility barriers, which undermine user satisfaction and expose the limitations of conventional operational frameworks. This study investigates how artificial intelligence can be integrated into service blueprinting and digital servicescape design to enhance passenger experience at Jatimulya Station. Using a qualitative approach supported by literature review, observations, interviews, and document analysis, the research employs thematic analysis to map passenger journeys, identify service encounter bottlenecks, and assess environmental factors affecting user perceptions. Findings demonstrate that AI-enhanced blueprinting enables predictive congestion management, dynamic staff allocation, and real-time adjustments, while digital servicescape innovations improve wayfinding, inclusivity, and transparency by synchronizing physical and digital touchpoints. Theoretically, this study extends established frameworks of service blueprint, servicescape, and service encounters into AI-driven contexts, while practically offering recommendations for PT Kereta Api Indonesia and policymakers to optimize station-level service delivery, improve passenger trust, and advance sustainable urban mobility.

Downloads

Download data is not yet available.

Author Biographies

Lia Siti Julaeha, Universitas Ary Ginanjar Indonesia

Department of Management

Irwan Riyandi, Universitas Ary Ginanjar Indonesia

Department of Management

Mohammad Dewa Lintang Umbaran, Universitas Ary Ginanjar Indonesia

Department of Management

References

S. Oh and X. Wang, “Urban Rail Transit Provides the Necessary Access to a Metropolitan Area: A Case Study of Portland, Oregon, USA,” Urban Rail Transit, vol. 4, no. 4, pp. 234–248, 2018, doi: 10.1007/s40864-018-0095-3.

N. Najid, “Mode choice analysis between LRT and car route Kebayoran Lama-Kelapa Gading,” IOP Conf. Ser. Mater. Sci. Eng., vol. 508, p. 12002, 2019, doi: 10.1088/1757-899x/508/1/012002.

E. T. Pelangi, R. Situmorang, J. C. Levara, and H. M. Taki, “Satisfaction level of intermodal public transport passengers at Duri Station, Jakarta Indonesia,” in IOP Conference Series Earth and Environmental Science, IOP Publishing, 2021, p. 12053. doi: 10.1088/1755-1315/737/1/012053.

D. achmad Nawawi and A. I. Saidi, “Kajian Persepsi Visual Pengguna Peta Diagram Rute KRL Jabodetabek,” Wimba J. Komun. Vis., vol. 14, no. 1, 2023, doi: 10.5614/jkvw.2023.14.1.5.

G. G. Fabregat, P. F. i Casas, and A. Martínez, “Intelligent Optimization of Bike-Sharing Systems: Predictive Models and Algorithms for Equitable Bicycle Distribution in Barcelona,” Sustainability, vol. 17, no. 10, p. 4316, 2025, doi: 10.3390/su17104316.

M. J. Bitner, A. L. Ostrom, and F. N. Morgan, “Service Blueprinting: A Practical Technique for Service Innovation,” Calif. Manage. Rev., vol. 50, no. 3, pp. 66–94, 2008, doi: 10.2307/41166446.

J. Brownell, “Managing Context to Improve Cruise Line Service Relationships,” 2014, [Online]. Available: https://scholarship.sha.cornell.edu/chrpubs/175/

N. Badriyah and A. Kuswanto, “Pengaruh Kualitas Layanan, Akses, Harga, dan Kompetensi Karyawan Terhadap Kepuasan Pelanggan PT Kereta Api Indonesia (Studi Kasus Stasiun Malang Kota Baru),” 2023. [Online]. Available: https://cakrawala.imwi.ac.id/index.php/cakrawala/article/download/249/221

D. Canales et al., “Connected Urban Growth: Public-Private Collaborations for Transforming Urban Mobility,” 2017, [Online]. Available: https://files.wri.org/s3fs-public/connected-urban-growth-public-private-collaborations-transforming-urban-mobility.pdf

A. Anagnostopoulou, D. Tolikas, E. D. Spyrou, A. Akac, and V. Kappatos, “The Analysis and AI Simulation of Passenger Flows in an Airport Terminal: A Decision-Making Tool,” Sustainability, vol. 16, no. 3, p. 1346, 2024, doi: 10.3390/su16031346.

N. M. Huwaida, A. Nugroho, and R. C. Joenso, “Towards Tawang Station Area as Smart Urban Railway Space,” J. Archit. Des. Urban., vol. 2, no. 2, pp. 24–37, 2020, doi: 10.14710/jadu.v2i2.7593.

R. Halvorsrud and K. Kvale, “Strengthening customer relationships through Customer Journey Analysis,” in Edward Elgar Publishing eBooks, Edward Elgar Publishing, 2017. doi: 10.4337/9781785369483.00021.

J. Wirtz and V. Pitardi, “How intelligent automation, service robots, and AI will reshape service products and their delivery,” Ital. J. Mark., vol. 2023, no. 3, pp. 289–300, 2023, doi: 10.1007/s43039-023-00076-1.

A. I. Gunawan, A. Primayandi, and D. Nurkholik, “Examining Passengers’ Satisfaction with Public Transportation in The Rise of Health Concerns,” J. Mark. Innov., vol. 2, no. 2, 2022, doi: 10.35313/jmi.v2i2.43.

A. Soelistiyono and C. Feijuan, “A Literature Review of Labor Absorption Level of Vocational High School Graduate In Indonesia,” 2021. doi: 10.2991/assehr.k.211223.155.

Henmaidi, J. Jonrinaldi, and H. Yenny, “Evaluation of Service Quality of Public Transportation (Study Case of Trans Padang),” in IOP Conference Series Materials Science and Engineering, IOP Publishing, 2020, p. 12030. doi: 10.1088/1757-899x/1003/1/012030.

M. J. Meixell and M. Norbis, “A review of the transportation mode choice and carrier selection literature,” 2008, Emerald Publishing Limited. doi: 10.1108/09574090810895951.

F. Rozaq and D. T. Istiantara, “The Customer Service Quality of Railway Station in Yogyakarta,” in IOP Conference Series Materials Science and Engineering, IOP Publishing, 2018, p. 12037. doi: 10.1088/1757-899x/407/1/012037.

Y. Komalasari, “Light Rapid Transit (LRT) Transport Integration Performance (Case Study on LRT South Sumatra in 2019-2021),” JMKSP (Jurnal Manaj. Kepemimp. dan Supervisi Pendidikan), vol. 7, no. 2, p. 460, 2022, doi: 10.31851/jmksp.v7i2.7684.

G. Anugrah, R. W. D. Arifin, D. Kusumastuti, S. Karamy, and A. Amanda, “Museum Service Value Blueprint: An Enhanced View on Visitor Experience,” Tour. Sustain. Dev. Rev., vol. 1, no. 2, pp. 87–93, 2020, doi: 10.31098/tsdr.v1i2.13.

S. J. Bickley, H. F. Chan, 中島邦男, B. Torgler, T. C. Son, and A. Zimbatu, “Comparing human and synthetic data in service research: using augmented language models to study service failures and recoveries,” J. Serv. Mark., 2024, doi: 10.1108/jsm-11-2023-0441.

V. L. Vujadinovic et al., “AI-Driven Approach for Enhancing Sustainability in Urban Public Transportation,” Sustainability, vol. 16, no. 17, p. 7763, 2024, doi: 10.3390/su16177763.

Å. Jevinger, C.-K. Zhao, J. Persson, and P. Davidsson, “Artificial intelligence for improving public transport: a mapping study,” Public Transp., vol. 16, no. 1, pp. 99–158, 2023, doi: 10.1007/s12469-023-00334-7.

R. Tang et al., “A literature review of Artificial Intelligence applications in railway systems,” 2022, Elsevier BV. doi: 10.1016/j.trc.2022.103679.

D. Mirindi, “A Review of the Advances in Artificial Intelligence in Transportation System Development,” 2024, Science Publishing Group. doi: 10.11648/j.jccee.20240903.13.

A. Nikitas, K. Michalakopoulou, E. T. Njoya, and D. Karampatzakis, “Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era,” Sustainability, vol. 12, no. 7, p. 2789, 2020, doi: 10.3390/su12072789.

R. Passarella, S. Nurmaini, M. N. Rachmatullah, H. Veny, and F. N. N. Hafidzoh, “Development of a machine learning model for predicting abnormalities of commercial airplanes,” Data Sci. Manag., vol. 7, no. 3, pp. 256–265, 2024, doi: 10.1016/j.dsm.2024.03.002.

A. M. Geske, D. M. Herold, and S. Kummer, “Artificial intelligence as a driver of efficiency in air passenger transport: A systematic literature review and future research avenues,” J. Air Transp. Res. Soc., vol. 3, p. 100030, 2024, doi: 10.1016/j.jatrs.2024.100030.

P. Bubeník, M. Rakyta, M. Buzalka, V. Biňasová, and Z. Kovaríková, “Optimization of Business Processes Using Artificial Intelligence,” Electronics, vol. 14, no. 11, p. 2105, 2025, doi: 10.3390/electronics14112105.

P. López-Aguilar, E. Batista, A. Martínez-Ballesté, and A. Solanas, “Information Security and Privacy in Railway Transportation: A Systematic Review,” 2022, Multidisciplinary Digital Publishing Institute. doi: 10.3390/s22207698.

A. Padovano, F. Longo, L. Manca, and R. Grugni, “Improving safety management in railway stations through a simulation-based digital twin approach,” Comput. Ind. Eng., vol. 187, p. 109839, 2023, doi: 10.1016/j.cie.2023.109839.

I. Atanasov, D. Dimitrova, E. Pencheva, and V. Trifonov, “Railway Cloud Resource Management as a Service,” Futur. Internet, vol. 17, no. 5, p. 192, 2025, doi: 10.3390/fi17050192.

T. Dirsehan, “Mapping Smart Mobility Technologies at Istanbul New Airport Using the Customer Journey,” in IntechOpen eBooks, IntechOpen, 2019. doi: 10.5772/intechopen.86135.

M. Baldauf and M. Tomitsch, “Pervasive displays for public transport,” 2020, doi: 10.1145/3393712.3395335.

S. Wei, D. Xu, J. Wu, Q. Shen, and T. Nie, “An Experiment in Wayfinding in a Subway Station Based on Eye Tracker Analytical Techniques for Universal and Age-Friendly Design,” Buildings, vol. 15, no. 10, p. 1583, 2025, doi: 10.3390/buildings15101583.

A. Di Rienzo, F. Garzotto, P. Cremonesi, C. Frà, and M. Valla, “Integrated Interaction with Large and Small Devices,” pp. 9–11, 2015, doi: 10.1145/2754633.2754888.

C. Hale and M. Miller, “Amenity and opportunity at rail stations,” Aust. Plan., vol. 50, no. 1, pp. 44–54, 2012, doi: 10.1080/07293682.2012.703679.

A. S. Rui, D. A. Plewe, and C. Röcker, “Themed Passenger Carriages: Promoting Commuters’ Happiness on Rapid Transit Systems through Ambient and Aesthetic Intelligence,” Procedia Manuf., vol. 3, pp. 2103–2109, 2015, doi: 10.1016/j.promfg.2015.07.348.

C. Brakewood, G. S. Macfarlane, and K. Watkins, “The impact of real-time information on bus ridership in New York City,” Transp. Res. Part C Emerg. Technol., vol. 53, pp. 59–75, 2015, doi: 10.1016/j.trc.2015.01.021.

L. R. Andrada, M. S. Celemín-Pedroche, M.-D. Escat-Cortés, and A. Jiménez-Crisóstomo, “Passengers satisfaction with the technologies used in smart airports: An empirical study from a gender perspective,” J. Air Transp. Manag., vol. 107, p. 102347, 2022, doi: 10.1016/j.jairtraman.2022.102347.

R. de Sousa, L. Bragança, M. V. da Silva, and R. S. Oliveira, “Challenges and Solutions for Sustainable Food Systems: The Potential of Home Hydroponics,” Sustainability, vol. 16, no. 2, p. 817, 2024, doi: https://doi.org/10.3390/su16020817.

B. J. Hutagaol, Dennis, M. Richard, and N. Legowo, “Smart Commuter Line (KRL) using IoT and SOA in Indonesia,” Int. J. Recent Technol. Eng., vol. 8, no. 5, pp. 485–488, 2020, doi: 10.35940/ijrte.e4976.018520.

M. Wilbur, A. Sivagnanam, A. Ayman, S. Samaranayeke, A. Dubey, and A. Laszka, “Artificial Intelligence for Smart Transportation,” 2023, doi: 10.48550/ARXIV.2308.07457.

J.-J. Hew, L.-W. Wong, G. W.-H. Tan, K.-B. Ooi, and B. Lin, “The blockchain-based Halal traceability systems: a hype or reality?,” Supply Chain Manag., vol. 25, no. 6, pp. 863–879, 2020, doi: https://doi.org/10.1108/SCM-01-2020-0044.

J. Frenette, “The Human-Centric Approach to AI in the Travel Industry,” World J. Adv. Res. Rev., vol. 16, no. 3, pp. 1250–1261, 2022, doi: 10.30574/wjarr.2022.16.3.1387.

D. Patil, “Artificial Intelligence-Driven Customer Service: Enhancing Personalization, Loyalty, And Customer Satisfaction,” 2025, doi: 10.2139/ssrn.5057432.

A. Ghosh, S. Gupta, A. Dua, and N. Kumar, “Security of Cryptocurrencies in Blockchain Technology: State-of-Art, Challenges and Future Prospects,” J. Netw. Comput. Appl., vol. 163, no. April, p. 102635, 2020, doi: 10.1016/j.jnca.2020.102635.

M. Alfalasi, “Emirates’ AI Innovation Challenge: Enhancing Customer Experience through Personalized In-Flight Services,” Eur. J. Bus. Strateg. Manag., vol. 10, no. 3, pp. 31–43, 2025, doi: 10.47604/ejbsm.3323.

E. A. de Souza, “The Transformation of Public Administration Through Artificial Intelligence,” Rev. fisio&terapia., vol. 29, no. 145, pp. 44–45, 2025, doi: 10.69849/revistaft/ch10202504040744.

N. Shiwakoti, Q. Hu, M. K. Pang, T. M. Cheung, Z. Xu, and H. Jiang, “Passengers’ Perceptions and Satisfaction with Digital Technology Adopted by Airlines during COVID-19 Pandemic,” Futur. Transp., vol. 2, no. 4, pp. 988–1009, 2022, doi: 10.3390/futuretransp2040055.

D. Mimra et al., “Understanding Visually Impaired Tramway Passengers’ Interaction with Public Transport Systems,” AHFE Int., vol. 186, 2025, doi: 10.54941/ahfe1006509.

K. Chemnad and A. Othman, “Digital accessibility in the era of artificial intelligence—Bibliometric analysis and systematic review,” 2024, Frontiers Media. doi: 10.3389/frai.2024.1349668.

M. Soori, B. Arezoo, and R. Dastres, “Artificial intelligence, machine learning and deep learning in advanced robotics, a review,” 2023, Elsevier BV. doi: 10.1016/j.cogr.2023.04.001.

P. Naayini, P. K. Myakala, C. Bura, A. K. Jonnalagadda, and S. Kamatala, “AI-Powered Assistive Technologies for Visual Impairment,” 2025, doi: 10.48550/ARXIV.2503.15494.

A. Setiawan, A. Mufti, F. A. Mau, A. Purkoni, and A. Setiawan, “Bridging Cybersecurity and Enterprise Risk Management in the Digital Era,” TechComp Innov. J. Comput. Sci. Technol., vol. 2, no. 1, pp. 28–38, 2025, doi: https://doi.org/10.70063/techcompinnovations.v2i1.66.

M. J. J. Gumasing, T. R. P. Del Castillo, A. Palermo, J. T. G. Tabino, and J. T. Gatchalian, “Enhancing Accessibility in Philippine Public Bus Systems: Addressing the Needs of Persons with Disabilities,” Disabilities, vol. 5, no. 2, p. 45, 2025, doi: 10.3390/disabilities5020045.

A. Guo, E. Kamar, J. W. Vaughan, H. Wallach, and M. R. Morris, “Toward Fairness in AI for People with Disabilities: A Research Roadmap,” arXiv (Cornell Univ., 2019, doi: 10.48550/arxiv.1907.02227.

R. Sajja, Y. Sermet, and İ. Demir, “End-to-End Deployment of the Educational AI Hub for Personalized Learning and Engagement: A Case Study on Environmental Science Education,” EarthArXiv (California Digit. Libr., 2024, doi: 10.31223/x5xm7n.

R. Wolniak and K. Stecuła, “Artificial Intelligence in Smart Cities—Applications, Barriers, and Future Directions: A Review,” 2024, Multidisciplinary Digital Publishing Institute. doi: 10.3390/smartcities7030057.

A. M. H. Sitorus, “Sistem Transportasi Terintegrasi di DKI Jakarta: Analisis Transformasi Berkeadilan Sosial,” J. Sosiol. Andalas, vol. 8, no. 1, pp. 31–41, 2022, doi: 10.25077/jsa.8.1.31-41.2022.

R. J. Tumpa and L. M. Naeni, “Improving decision-making and stakeholder engagement at project governance using digital technology for sustainable infrastructure projects,” Smart Sustain. Built Environ., 2025, doi: 10.1108/sasbe-10-2024-0451.

W. Wardhani, R. P. Situmorang, J. C. Levara, and H. M. Taki, “Passengers services preferences on Jakarta MRT phase I (Lebak Bulus to Hotel Indonesia),” IOP Conf. Ser. Earth Environ. Sci., vol. 737, no. 1, p. 12055, 2021, doi: 10.1088/1755-1315/737/1/012055.

N. Rashvand, S. S. Hosseini, M. Azarbayjani, and H. Tabkhi, “Real-Time Bus Departure Prediction Using Neural Networks for Smart IoT Public Bus Transit,” IoT, vol. 5, no. 4, pp. 650–665, 2024, doi: 10.3390/iot5040029.

M. M. Khardali, “A Conceptual Framework for Real-Time Supply Chain Resilience: Addressing Weather-Induced Challenges in Jazan Region,” 2024, doi: 10.46254/gc02.20240075.

Elbadiansyah, Z. H. Sain, U. S. Lawal, C. C. Thelma, and A. L. Aziz, “Exploring the Role of Artificial Intelligence in Enhancing Student Motivation and Cognitive Development in Higher Education,” TechComp Innov. J. Comput. Sci. Technol., vol. 1, no. 2, pp. 59–67, 2024, doi: https://doi.org/10.70063/techcompinnovations.v1i2.47.

Ł. Pałys, M. Ganzha, and M. Paprzycki, “Applying machine learning to predict behavior of bus transport in Warsaw, Poland,” arXiv (Cornell Univ., 2022, doi: 10.48550/arxiv.2204.04515.

S. P. Phokoye et al., “Exploring the Adoption of Robotics in Teaching and Learning in Higher Education Institutions,” Informatics, vol. 11, no. 4, p. 91, 2024, doi: 10.3390/informatics11040091.

A. S. PILLAI, “Traffic Management: Implementing AI To Optimize Traffic Flow and Reduce Congestion,” SSRN Electron. J., 2024, doi: 10.2139/ssrn.4916398.

N. S. Azzaky, A. Salimah, and C. R. Saputri, “Revolutionizing Business: The Role of AI in Driving Industry 4.0,” TechComp Innov. J. Comput. Sci. Technol., vol. 1, no. 1, pp. 28–37, 2024, doi: https://doi.org/10.70063/techcompinnovations.v1i1.24.

G. A. Auladi and F. Muwahid, “Cybersecurity and Moral Responsibility: A Philosophical-Islamic Approach to Digital Trust,” TechComp Innov. J. Comput. Sci. Technol., vol. 2, no. 1, pp. 53–65, 2025, doi: https://doi.org/10.70063/techcompinnovations.v2i1.93.

K. Han, J. Zhang, C. Zhu, L. Yang, X. Huang, and S. Li, “Meta-learning Based Short-Term Passenger Flow Prediction for Newly-Operated Urban Rail Transit Stations,” arXiv (Cornell Univ., 2022, doi: 10.48550/arxiv.2210.07098.

S. P. R. Asaithambi, R. Venkatraman, and S. Venkatraman, “MOBDA: Microservice-Oriented Big Data Architecture for Smart City Transport Systems,” Big Data Cogn. Comput., vol. 4, no. 3, p. 17, 2020, doi: 10.3390/bdcc4030017.

A. A. T. J. Cassidy, A. Fuad, and M. U. A. A. Shofy, “Emerging Trends and Challenges in Digital Crime: A Study of Cyber Criminal Tactics and Countermeasures,” TechComp Innov. J. Comput. Sci. Technol., vol. 1, no. 1, pp. 38–45, 2024, doi: https://doi.org/10.70063/techcompinnovations.v1i1.25.

Y. Bai and L. Kattan, “Modeling Riders’ Behavioral Responses to Real-Time Information at Light Rail Transit Stations,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2412, no. 1, pp. 82–92, 2014, doi: 10.3141/2412-10.

P. Noursalehi and H. N. Koutsopoulos, “Real-time Predictive Analytics for Improving Public Transportation Systems’ Resilience,” arXiv (Cornell Univ., 2016, doi: 10.48550/arxiv.1609.09785.

A. N. I. Purwanto and A. A. Hanif, “Home / Archives / Vol. 1 No. 1 (2024): TechComp Innovations: Journal of Computer Science and Technology / Articles Strategic Synergy: Integrating Business Management with Computer Science for Competitive Advantage,” TechComp Innov. J. Comput. Sci. Technol., vol. 1, no. 1, pp. 10–18, 2024, doi: https://doi.org/10.70063/techcompinnovations.v1i1.23.

S. Saha, “A TRAFFIC MANAGEMENT SYSTEM APPROACH WITH THE IMPLEMENTATION OF ARTIFICIAL INTELLIGENCE ALGORITHMS,” Int. J. Eng. Appl. Sci. Technol., vol. 4, no. 6, pp. 1–6, 2019, doi: 10.33564/ijeast.2019.v04i06.001.

G. Manoharan, A. Dharmaraj, S. C. Sheela, K. S. Naidu, M. Chavva, and J. K. Chaudhary, “Machine Learning-Based Real-Time Fraud Detection in Financial Transactions,” in 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), 2024, pp. 1–6. doi: 10.1109/accai61061.2024.10602350.

A. V. Abdussalam and G. A. Auladi, “Pushing Boundaries: AI and Computer Science in the Era of Technological Revolution,” TechComp Innov. J. Comput. Sci. Technol., vol. 1, no. 1, pp. 01–09, 2024, doi: https://doi.org/10.70063/techcompinnovations.v1i1.22.

Y. Shen, Y. Li, Q. Zhang, F. Li, and Z. Wang, “Consumer Psychology Based Optimal Portfolio Design for Demand Response Aggregators,” J. Mod. Power Syst. Clean Energy, vol. 9, no. 2, pp. 431–439, 2021, doi: https://doi.org/10.35833/MPCE.2019.000572.

A. Consilvio, L. Calabrò, A. Di Febbraro, and N. Sacco, “A multimodal solution approach for mitigating the impact of planned maintenance on metro rail attractiveness,” EURO J. Transp. Logist., vol. 10, p. 100047, 2021, doi: 10.1016/j.ejtl.2021.100047.

N. Kamarudeen, B. Sundarakani, and I. Manikas, “An Assessment of the Dubai Metro Service’s Performance Using SCOR Model and ARENA Simulation,” FIIB Bus. Rev., vol. 9, no. 3, pp. 167–180, 2020, doi: 10.1177/2319714520925749.

S. T. Bunyan et al., “Intelligent Thermal Condition Monitoring for Predictive Maintenance of Gas Turbines Using Machine Learning,” Machines, vol. 13, no. 5, p. 401, 2025, doi: 10.3390/machines13050401.

A. N. I. Purwanto and A. A. Hanif, “Strategic Synergy: Integrating Business Management with Computer Science for Competitive Advantage,” TechComp Innov. J. Comput. Sci. Technol., vol. 1, no. 1, pp. 10–18, 2024, doi: https://doi.org/10.70063/techcompinnovations.v1i1.23.

F. Moreno and D. S. Callanta, “The Socioeconomic Implications of Farm-to-Market Road Infrastructure on Rural Development in Zamboanga Sibugay Province, Philippines: An Analysis of Policy and Community Outcomes,” 2025, doi: 10.2139/ssrn.5057002.

M. Farda and H. Lubis, “Transportation System Development and Challenge in Jakarta Metropolitan Area, Indonesia,” Int. J. Sustain. Transp. Technol., vol. 1, no. 2, pp. 42–50, 2018, doi: 10.31427/ijstt.2018.1.2.2.

R. Nurcahyo, F. Farizal, B. M. I. Arifianto, and M. Habiburrahman, “Mass Rapid Transit Operation and Maintenance Cost Calculation Model,” J. Adv. Transp., vol. 2020, pp. 1–6, 2020, doi: 10.1155/2020/7645142.

A. Mouratidis, “Smooth integration of transport infrastructure into urban space,” J. Infrastruct. Policy Dev., vol. 5, no. 2, p. 1379, 2021, doi: 10.24294/jipd.v5i2.1379.

S. M. K. Rajesh et al., “Sustainable Transportation in Metropolitan Cities; Berlin, Helsinki, New Delhi and Pune,” IOP Conf. Ser. Earth Environ. Sci., vol. 297, no. 1, p. 12025, 2019, doi: 10.1088/1755-1315/297/1/012025.

P. Soczówka, R. Żochowska, A. Sobota, and M. J. Kłos, “IDENTIFICATION OF GOOD PRACTICES FOR RAILWAY SYSTEMS IN URBAN AREAS,” Probl. Transp. i Logistyki, vol. 46, pp. 69–80, 2019, doi: 10.18276/ptl.2019.46-07.

A. Nikitas, I. Kougias, E. Alyavina, and E. N. Tchouamou, “How Can Autonomous and Connected Vehicles, Electromobility, BRT, Hyperloop, Shared Use Mobility and Mobility-As-A-Service Shape Transport Futures for the Context of Smart Cities?,” Urban Sci., vol. 1, no. 4, p. 36, 2017, doi: 10.3390/urbansci1040036.

L. Zhang, D. Li, C. Cao, and S. Huang, “The influence of greenwashing perception on green purchasing intentions: The mediating role of green word-of-mouth and moderating role of green concern,” J. Clean. Prod., vol. 187, pp. 740–750, 2018, doi: 10.1016/j.jclepro.2018.03.201.

S. Gößling, C. Neger, R. Steiger, and R. Bell, “Weather, climate change, and transport: a review,” 2023, Springer Science+Business Media. doi: 10.1007/s11069-023-06054-2.

Downloads

Published

18-08-2025

How to Cite

[1]
L. S. Julaeha, I. Riyandi, and M. D. L. Umbaran, “Smart Service Design in Urban Rail: AI-Enhanced Blueprint, Digital Servicescape, and Passenger Experience at Jabodebek LRT Jatimulya Station”, RIGGS, vol. 4, no. 3, pp. 2832–2843, Aug. 2025.