Investigating the Integration of Big Data Technologies in Higher Education Settings

Khatera Akrami1, Mursal Akrami2, Fazila Akrami1, Musawer Hakimi2*

1Women Online University, Afghanistan
2Samangan University, Samangan, Afghanistan

1Khatera.akrami1365@gmail.com, 1mursalakrami1996@gmail.com, 1Fazilaakrami92@gmail.com,
2musawer@adc.edu.in*

ABSTRACT
The integration of big data technologies in higher education is a topic of growing interest due to its potential to revolutionize teaching, learning, and administrative processes. This study aims to explore the impact of big data technologies on educational practices and outcomes in higher education settings. Through a comprehensive investigation, including literature review, surveys, and statistical analysis, the study examines the utilization, effectiveness, and challenges associated with integrating big data technologies in educational settings. Key findings reveal a significant positive correlation between the utilization of big data technologies and the frequency of interaction among faculty, researchers, and practitioners. Additionally, faculty training is identified as a crucial factor influencing the successful integration of big data technologies in higher education. Institutional support emerges as a key facilitator in the effective implementation of big data technologies, while student readiness, including technological proficiency and willingness to engage, is found to positively correlate with integration efforts. The perceived effectiveness of big data technologies mediates the relationship between integration efforts and outcomes in higher education settings. Based on these findings, recommendations are provided to enhance the integration of big data technologies in higher education, including the need for continuous faculty training, institutional support, and student readiness initiatives. Overall, this study contributes to the ongoing discourse on leveraging data-driven approaches to enhance educational practices and outcomes in higher education.

Keywords: Big data technologies, higher education, integration, faculty training, student readiness

1. Introduction

In recent years, the integration of big data technologies in higher education settings has garnered significant attention due to its potential to revolutionize teaching, learning, and institutional management. With the exponential growth of data generated within educational environments, educators and administrators are increasingly turning to big data analytics to extract valuable insights and enhance various aspects of the educational experience (Good, 2015; Al-Emran et al., 2016). This introduction provides an overview of the current landscape of big data integration in higher education settings, highlighting its importance, challenges, and potential implications.

The utilization of big data analytics in higher education is driven by the need to improve student outcomes, enhance institutional effectiveness, and adapt to the evolving demands of the digital age (Al-Rahmi et al., 2019; Alamri et al., 2020). By harnessing vast amounts of data generated from student interactions, academic performance, and administrative processes, universities can gain deeper insights into learning patterns, identify at-risk students, and tailor interventions to support student success (Liang et al., 2016). Additionally, big data technologies offer opportunities for optimizing resource allocation, streamlining administrative tasks, and improving overall operational efficiency within educational institutions (Al-Rahmi et al., 2020).

However, despite the potential benefits, the integration of big data technologies in higher education settings presents several challenges and complexities (Fischer et al., 2020; Daniel, 2015). These include issues related to data privacy and security, data governance and management, technological infrastructure, and faculty readiness and training (Chen et al., 2016; Cockrell & Stone, 2010). Moreover, there is a need to ensure ethical considerations and responsible use of data in educational decision-making processes (Butson & Daniel, 2017).

To address these challenges and maximize the potential of big data technologies in higher education, it is essential to conduct comprehensive research that...
examines the factors influencing the adoption, implementation, and impact of these technologies (Holland, 2019; Cope & Kalantzis, 2016). This study aims to investigate the integration of big data technologies in higher education settings, with a focus on understanding the determinants, challenges, and opportunities associated with this phenomenon.

Drawing on insights from existing literature and empirical research, this study will explore key research questions, such as the role of institutional support, faculty readiness, student engagement, and technological infrastructure in facilitating the integration of big data technologies in higher education settings (Burmeister et al., 2013; Avramides et al., 2015). By examining these factors through a multidisciplinary lens, this study seeks to contribute to a deeper understanding of the implications of big data integration for teaching, learning, and institutional management in higher education.

In conclusion, the integration of big data technologies has the potential to transform higher education by enabling data-driven decision-making, enhancing student learning experiences, and improving institutional effectiveness. However, realizing these benefits requires addressing various challenges and complexities inherent in the adoption and implementation of big data analytics in educational settings (Maldonado-Mahauad et al., 2018). Through empirical research and evidence-based insights, this study aims to inform strategies and best practices for effectively integrating big data technologies in higher education, ultimately advancing the quality and relevance of education in the digital age.

Problem Statement

The integration of big data technologies in higher education settings presents a complex and multifaceted challenge that requires careful consideration and analysis. As educational institutions increasingly generate and collect vast amounts of data, there is a growing need to leverage these resources effectively to improve teaching, learning, and institutional management. However, despite the potential benefits of big data analytics in higher education, numerous challenges and barriers hinder its successful integration and utilization.

One significant challenge is the lack of institutional readiness and capacity to implement big data initiatives effectively. Many universities struggle with outdated technological infrastructure, limited resources, and insufficient faculty training and support, hindering their ability to harness the full potential of big data analytics. Additionally, concerns regarding data privacy, security, and ethical considerations further complicate the adoption and implementation of big data technologies in educational settings.

Furthermore, the diverse and rapidly evolving nature of big data presents challenges in terms of data management, analysis, and interpretation. Educational institutions must grapple with the complexities of processing and analyzing large volumes of diverse data sources, ranging from student demographics and academic performance to institutional operations and learning environments. Without adequate tools, expertise, and methodologies, extracting actionable insights from big data remains a formidable task for many universities.

Overall, the integration of big data technologies in higher education settings is a complex and multifaceted problem that requires careful consideration of various factors, including institutional readiness, technological infrastructure, data governance, and ethical considerations. Addressing these challenges and barriers is essential to realizing the full potential of big data analytics in improving teaching, learning, and institutional effectiveness in higher education.

2. LITERATURE REVIEW

The integration of big data analytics in higher education has become a topic of significant interest due to its potential to enhance teaching, learning, and administrative processes. This literature review examines various studies that investigate the adoption, application, and implications of big data in higher education.

Al-Rahmi and Alkhalaf (2021) conducted an empirical investigation into the adoption of big data in higher education sustainability, highlighting its importance for addressing contemporary challenges in the educational landscape. Good (2015) explored the relationships between educational technology use and instructional elements using big data, providing insights into the effectiveness of technology-enhanced learning environments. Fischer et al. (2020) examined the affordances and challenges of mining big data in education, emphasizing the need for robust data analytics frameworks and methodologies. Hirashima et al. (2017) proposed a model-based approach for educational big data analysis, highlighting its potential for analyzing learner behavior and optimizing instructional strategies.

Ray and Saeed (2018) discussed the applications of educational data mining and learning analytics tools in handling big data, emphasizing their role in improving educational outcomes and decision-making processes. Al-Emran et al. (2016) investigated attitudes towards the use of mobile learning in higher education, shedding light on factors influencing the acceptance and effectiveness of mobile learning platforms. Holland (2019) and Fazil et al. (2024) synthesized effective principles of informal online learning design.
providing a theoretical framework for designing engaging and interactive online learning environments. Martin et al. (2020) explored higher education faculty's use of digital technologies, focusing on the importance, competence, and motivation of educators in integrating technology into their teaching practices. Geng et al. (2019) and Hakimi et al. (2024) investigated self-directed learning and technology readiness in a blended learning environment, highlighting the role of learner autonomy and technology proficiency in successful learning outcomes. Kalaian et al. (2019) discussed descriptive and predictive analytical methods for big data, outlining techniques for analyzing large datasets and deriving actionable insights.

Kamilarisi et al. (2017) reviewed the practice of big data analysis in agriculture, illustrating the potential applications of data analytics in optimizing agricultural processes and resource management. Study by Sin and Muthu (2015) explores the growing application of big data in education, particularly in the realms of educational data mining and learning analytics. With the increasing usage of learning management systems and mobile devices among students, vast amounts of data are being generated, necessitating the adoption of big data technologies to effectively process and analyze this information. The study provides insights into recent developments in utilizing big data tools and techniques to enhance educational practices and outcomes. Lia and Zhaia (2018) reviewed and prospectively discussed modern education using big data, highlighting emerging trends and future directions in leveraging data-driven approaches for educational innovation. Liang et al. (2016) and Hakimi et al. (2024) presented a case study on dropout prediction in MOOCs using big data analytics, demonstrating the feasibility of predictive modeling in identifying at-risk learners.

Logica and Magdalena (2015) explored the use of big data in the academic environment, discussing its potential applications for institutional research, student support, and educational policy development. Maldonado-Mahauad et al. (2018) mined theory-based patterns from big data to identify self-regulated learning strategies in massive open online courses, offering insights into effective learning behaviors and interventions.

Martinez-Abad et al. (2018) discussed the role of big data in education, emphasizing its potential for enhancing teaching and learning processes through data-driven decision-making and personalized learning experiences. Agrawal (2015) investigated the determinants of big data analytics adoption in Asian emerging economies, highlighting the factors influencing organizational readiness and willingness to embrace data-driven approaches. Alalwan et al. (2019) developed a model of factors affecting students' academic performance in higher education, integrating three theoretical perspectives to understand the complex interplay of individual, institutional, and environmental factors. Alamri et al. (2020) and Hakimi et al. (2024) examined the role of compatibility and task-technology fit in social networking applications usage in higher education, emphasizing the importance of aligning technology with educational goals and objectives.

Al-Rahmi et al. (2021a) and Hasas et al. (2024) explored the factors affecting mobile learning for sustainability in higher education, highlighting the need for integrating sustainability principles into educational practices and policies. Al-Rahmi et al. (2021b) investigated the influence of information system success and technology acceptance model on social media factors in education, underscoring the importance of user acceptance and system effectiveness in leveraging social media for educational purposes. Al-Rahmi et al. (2020) and Hakimi et al. (2024) examined digital communication's role in education sustainability, emphasizing the transformative potential of information and communication technologies in advancing educational access and quality. Al-Rahmi et al. (2019) investigated big data adoption and knowledge management sharing in education, highlighting the challenges and opportunities associated with leveraging data-driven approaches for knowledge creation and dissemination.

Bihl et al. (2016) defined and addressed big data in business analytics, providing a comprehensive overview of key concepts, methodologies, and applications. Butson and Daniel (2017) examined the rise of big data and analytics in higher education, discussing its implications for institutional research, student support, and administrative decision-making. Chen et al. (2016) surveyed big data analytics and science, providing insights into emerging trends, challenges, and opportunities in the field. Cockrell and Stone (2010) explored industry culture's influence on pseudo-knowledge sharing, highlighting organizational factors that facilitate or hinder knowledge sharing behaviors.

Cope and Kalantzis (2016) discussed the implications of big data for learning, assessment, and research in education, emphasizing its potential for transforming traditional educational practices and paradigms. Daniel (2015) discussed the opportunities and challenges of big data and analytics in higher education, highlighting the importance of data-driven decision-making and evidence-based practices.

This literature review provides a comprehensive overview of research on big data in higher education, highlighting its potential applications, challenges, and implications for teaching, learning, and administrative
decision-making. By synthesizing findings from various studies, this review contributes to the ongoing discourse on leveraging data-driven approaches to enhance educational practices and outcomes.

Research Questions

What is the extent of utilization of big data technologies in education, and how frequently do faculty, researchers, and practitioners interact with these technologies?

How does faculty training influence the integration of big data technologies in higher education?

What is the influence of institutional support on the successful integration of big data technologies in higher education?

How does student readiness, including technological proficiency and willingness to engage, affect the integration of big data technologies in higher education?

How does the perceived effectiveness of big data technologies mediate the outcomes of integration efforts in higher education settings?

Research Hypothesis

H1: Increased utilization of big data technologies is positively correlated with higher frequency of interaction among faculty, researchers, and practitioners in educational settings.

H2: Faculty training positively influences the integration of big data technologies in higher education settings.

H3: Institutional support significantly facilitates the successful integration of big data technologies in higher education.

H4: Student readiness, including technological proficiency and willingness to engage, positively correlates with the integration of big data technologies in higher education.

H5: The perceived effectiveness of big data technologies mediates the relationship between integration efforts and outcomes in higher education settings.

I. 3. Method

This study employed a mixed-methods approach, combining quantitative questionnaires and qualitative interviews to comprehensively investigate the integration of big data technologies in higher education settings.

Quantitative Phase: In the quantitative phase, a stratified random sample of 150 students and 20 teachers was selected from diverse universities spanning Balkh, Kabul, Women Online, Samangan, and Badakhshan regions. A structured questionnaire was designed to collect quantitative data on various aspects, including the utilization of big data technologies, satisfaction levels, comfort with technology tools, and perceptions of educational outcomes. Participants responded to Likert-scale items, enabling the measurement of attitudes and perceptions. Statistical analyses such as ANOVA, t-tests, logistic regression, and factor analysis were conducted using software like SPSS to examine relationships, trends, and patterns within the data.

Qualitative Phase: The qualitative phase involved semi-structured interviews with a subset of participants selected purposively based on their responses in the quantitative phase. The interviews aimed to delve deeper into participants’ experiences, challenges, and perspectives regarding the integration of big data technologies in higher education. An interview guide was developed with open-ended questions to encourage detailed responses. Interviews were audio-recorded and transcribed verbatim for thematic analysis. Themes and patterns were identified to provide rich insights into participants’ viewpoints.

Data Integration: The quantitative and qualitative data were integrated during the analysis phase to triangulate findings and provide a comprehensive understanding of the research topic. Triangulation enhanced the validity and reliability of the study by corroborating findings from different data sources.

Ethical Considerations: Ethical considerations were paramount throughout the research process. Informed consent was obtained from all participants, emphasizing voluntary participation and confidentiality. Participants' anonymity was preserved, and their rights and welfare were safeguarded. The study protocol was approved by the institutional review board (IRB) to ensure compliance with ethical guidelines and standards.

4. Results

Results offer an in-depth exploration of the investigation's outcomes, spotlighting crucial insights into the integration of big data technologies within higher education settings.
Figure 1: Demographic Distribution of Students and Teachers across Faculties and Universities

The demographic composition of 100 male students and 50 female students, alongside 15 male teachers and 5 female teachers, suggests a gender imbalance, with more male students and teachers compared to their female counterparts. However, this distribution across various faculties and universities, including Balkh, Kabul, Women Online, Samangan, and Badakhshan, signifies a diverse representation of educational institutions across different regions. Each university likely offers unique academic programs and perspectives, contributing to a rich and varied educational landscape.

Figure 2: Distribution of Students and Teachers Across Fields of Study

The above figure 2 illustrates the distribution of students and teachers across different fields of study. Computer Science has the highest number of students, followed by Engineering and Economics, each with 40, 20, and 50 students respectively. Meanwhile, each field has an equal number of teachers, with 5 teachers in Computer Science, Medical, Engineering, and Economics.

Figure 3: Utilization of Big Data Technologies Among Students and Teachers

The statistical analysis conducted on the responses from 150 students and 20 teachers regarding their utilization of big data technologies revealed interesting findings.

Learning Management Software and Student information system emerged as the most frequently used technology, with a mean frequency score of 3.2 among students and 4.1 among teachers, indicating its widespread adoption and importance in educational endeavors. Conversely, academic advising tools showed the lowest mean frequency scores of 2.8 for students and 3.1 for teachers, suggesting a relatively lower level of engagement with this technology. These findings provide valuable insights into the current trends and preferences surrounding big data technology utilization in educational activities and research projects.

Table 1: Regression Analysis of Frequency of Interaction with Big Data Technologies Among Students and Teachers

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.15</td>
<td>0.31</td>
<td>6.94</td>
</tr>
<tr>
<td>Student</td>
<td>0.72</td>
<td>0.18</td>
<td>4.00</td>
</tr>
<tr>
<td>Teacher</td>
<td>0.98</td>
<td>0.25</td>
<td>3.92</td>
</tr>
</tbody>
</table>

The linear regression analysis in table conducted to examine the frequency of interaction with big data technologies among 150 students and 20 teachers. Results revealed a significant positive association between being a student or a teacher and the frequency of interaction with big data technologies (Student: $\beta =$
0.72, p < 0.001; Teacher: β = 0.98, p < 0.001). This suggests that both students and teachers engage more frequently with big data technologies in their professional endeavors. Additionally, the intercept was found to be significant (β = 2.15, p < 0.001), indicating a baseline level of interaction even when considering other factors. Overall, these findings highlight the importance of considering both student and teacher perspectives in implementing and utilizing big data technologies in educational settings.

Table 2: Relationship Between Confidence in Integrating Big Data Technologies and Perceived Learning Improvement

<table>
<thead>
<tr>
<th>Improve ment Level</th>
<th>Mean (Studen ts)</th>
<th>Mean (Teach ers)</th>
<th>Stand ard Deviation (Studen ts)</th>
<th>Stand ard Deviation (Teach ers)</th>
<th>Regres sion Coeffi cient</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not improve d at all</td>
<td>15.6</td>
<td>3.8</td>
<td>2.1</td>
<td>1.5</td>
<td>-0.25</td>
<td><0.001</td>
</tr>
<tr>
<td>Slightly improve d</td>
<td>35.2</td>
<td>7.3</td>
<td>3.5</td>
<td>2.0</td>
<td>-0.15</td>
<td>0.005</td>
</tr>
<tr>
<td>Moderately improve d</td>
<td>45.8</td>
<td>9.2</td>
<td>3.8</td>
<td>1.8</td>
<td>0.10</td>
<td>0.005</td>
</tr>
<tr>
<td>Significantly improve d</td>
<td>28.3</td>
<td>6.5</td>
<td>2.9</td>
<td>1.6</td>
<td>0.18</td>
<td>0.005</td>
</tr>
<tr>
<td>Greatly improve d</td>
<td>25.1</td>
<td>5.2</td>
<td>2.5</td>
<td>1.4</td>
<td>0.30</td>
<td><0.001</td>
</tr>
</tbody>
</table>

The above table 2 presents statistical analysis linking confidence levels in integrating big data technologies with perceived improvement in learning experiences. It reveals a clear trend: as confidence increases, mean scores for both students and teachers across all improvement levels tend to rise. Additionally, standard deviations show variability within each improvement level, suggesting diverse perceptions. Regression coefficients demonstrate the strength and direction of the relationship between confidence and improvement, with negative coefficients indicating a decrease in perceived improvement as confidence diminishes. Lastly, low p-values (<0.05) signify the statistical significance of these relationships, reinforcing the importance of confidence in enhancing learning experiences through big data integration.

Table 3: Regression Analysis of Training Levels Related to Big Data Technologies

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.87</td>
<td>0.26</td>
<td>3.35</td>
</tr>
<tr>
<td>Training Level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None at all</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very little</td>
<td>-0.32</td>
<td>0.15</td>
<td>-2.14</td>
</tr>
<tr>
<td>Some</td>
<td>0.45</td>
<td>0.18</td>
<td>2.50</td>
</tr>
<tr>
<td>Quite a bit</td>
<td>0.72</td>
<td>0.21</td>
<td>3.42</td>
</tr>
<tr>
<td>A great deal</td>
<td>1.25</td>
<td>0.29</td>
<td>4.32</td>
</tr>
</tbody>
</table>

The regression analysis in table 3 examined the relationship between training levels related to big data technologies and the extent of training received among respondents. The table presents coefficients, standard errors, t-values, and p-values for each category of training level compared to the reference category "None at all." Positive coefficients for "Very little," "Some," "Quite a bit," and "A great deal" indicate increasing levels of training compared to the reference category, with all coefficients statistically significant (p < 0.001). This suggests that as the level of training increases, respondents are more likely to have received professional development opportunities related to big data technologies.

Table 4: Accessibility Levels of Resources and Support Services for Faculty Members Integrating Big Data Technologies

<table>
<thead>
<tr>
<th>Accessibility Level</th>
<th>Mean (Studen ts)</th>
<th>Mean (Teach ers)</th>
<th>Stand ard Deviation (Studen ts)</th>
<th>Stand ard Deviation (Teach ers)</th>
<th>Correl ation Coeffi cient</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not accessible le at all</td>
<td>2.1</td>
<td>0.8</td>
<td>0.5</td>
<td>0.3</td>
<td>-0.25</td>
<td>0.005</td>
</tr>
<tr>
<td>Slightly accessible le</td>
<td>3.5</td>
<td>1.2</td>
<td>0.7</td>
<td>0.4</td>
<td>-0.15</td>
<td>0.005</td>
</tr>
<tr>
<td>Moderately accessible le</td>
<td>4.2</td>
<td>1.5</td>
<td>0.8</td>
<td>0.6</td>
<td>0.10</td>
<td>0.005</td>
</tr>
<tr>
<td>Very accessible le</td>
<td>4.8</td>
<td>2.0</td>
<td>0.9</td>
<td>0.7</td>
<td>0.18</td>
<td>0.005</td>
</tr>
<tr>
<td>Extreme ly accessible le</td>
<td>5.0</td>
<td>2.2</td>
<td>1.0</td>
<td>0.8</td>
<td>0.30</td>
<td>0.005</td>
</tr>
</tbody>
</table>

The statistical analysis of the accessibility levels of resources and support services for faculty members interested in integrating big data technologies into their courses in table 4 reveals several key findings.

DOI: https://doi.org/10.31004/ijmst.v2i2.296

Lisensi: Creative Commons Attribution 4.0 International (CC BY 4.0)
Firstly, there is a clear positive correlation between the accessibility level and the mean ratings provided by both students and teachers. As the accessibility level increases from "Not accessible at all" to "Extremely accessible," there is a corresponding increase in the mean ratings, indicating a perception of better access to resources.

Secondly, the correlation coefficients show that this relationship is statistically significant, as evidenced by the p-values being less than the conventional threshold of 0.05. This suggests that the observed correlations are unlikely to have occurred by chance.

Overall, these findings underscore the importance of enhancing the accessibility of resources and support services for faculty members interested in incorporating big data technologies into their courses, as it positively influences their perception and utilization of these technologies.

Table 5: Institutional Prioritization of Funding for Big Data Technologies in Higher Education

<table>
<thead>
<tr>
<th>Priority Level</th>
<th>Students (%)</th>
<th>Teachers (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not a priority</td>
<td>16.67</td>
<td>15.00</td>
</tr>
<tr>
<td>Low priority</td>
<td>23.33</td>
<td>25.00</td>
</tr>
<tr>
<td>Moderate priority</td>
<td>30.00</td>
<td>30.00</td>
</tr>
<tr>
<td>High priority</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Very high priority</td>
<td>10.00</td>
<td>10.00</td>
</tr>
</tbody>
</table>

This above table 5 illustrates the distribution of responses among students and teachers regarding the prioritization of funding and resources for implementing big data technologies in higher education. It shows that among students, 16.67% perceive it as "Not a priority," 23.33% as "Low priority," 30.00% as "Moderate priority," 20.00% as "High priority," and 10.00% as "Very high priority." Similarly, among teachers, 15.00% consider it "Not a priority," 25.00% as "Low priority," 30.00% as "Moderate priority," 20.00% as "High priority," and 10.00% as "Very high priority." This indicates a diverse range of perspectives on the prioritization of funding for big data technologies in higher education among both students and teachers.

The analysis in table 6 indicates that among students, the majority (65%) report feeling at least moderately comfortable with technology tools for academic purposes, with 15% feeling very comfortable and 5% extremely comfortable. In contrast, teachers show a higher level of comfort, with 90% reporting at least a moderate level of comfort, including 60% who feel extremely comfortable. This suggests that while both students and teachers generally feel comfortable with technology, teachers tend to have a higher level of comfort overall, potentially due to their professional experience and familiarity with educational technology.

Table 7: Logistic Regression Analysis of Technology-Based Learning Activity Engagement

<table>
<thead>
<tr>
<th>Activity Prioritization</th>
<th>Odds Ratio (Students)</th>
<th>Odds Ratio (Teachers)</th>
<th>95% CI (Students)</th>
<th>95% CI (Teachers)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never</td>
<td>1.00</td>
<td>1.00</td>
<td>(0.62, 1.51)</td>
<td>(0.95, 1.93)</td>
<td><0.05</td>
</tr>
<tr>
<td>Rarely</td>
<td>0.85</td>
<td>0.90</td>
<td>(0.71, 1.05)</td>
<td>(0.87, 1.36)</td>
<td><0.05</td>
</tr>
<tr>
<td>Occasionally</td>
<td>1.20</td>
<td>1.15</td>
<td>(1.05, 1.37)</td>
<td>(1.05, 1.36)</td>
<td><0.05</td>
</tr>
<tr>
<td>Frequently</td>
<td>1.45</td>
<td>1.25</td>
<td>(1.22, 1.76)</td>
<td>(1.22, 1.49)</td>
<td><0.05</td>
</tr>
<tr>
<td>Always</td>
<td>1.70</td>
<td>1.55</td>
<td>(1.35, 2.12)</td>
<td>(1.22, 1.97)</td>
<td><0.05</td>
</tr>
</tbody>
</table>

The analysis of engagement frequency with technology-based learning activities among 150 students and 20 teachers in Table 7 revealed significant associations. Both students and teachers showed increasing odds of engagement as frequency levels rose, with statistically significant differences noted for "Rarely," "Frequently," and "Always" categories compared to the "Never" category (p < 0.05). Notably, the odds ratios for "Frequently" and "Always" were substantially higher, indicating a strong positive relationship between frequent engagement and the likelihood of technology-based learning activity participation.

Table 8: Perceived Improvement Levels of Learning Experiences through Big Data Technologies in Higher Education

<table>
<thead>
<tr>
<th>Improvement Level</th>
<th>Mean (Students)</th>
<th>Mean (Teachers)</th>
<th>Standard Deviation (Students)</th>
<th>Standard Deviation (Teachers)</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not improved at all</td>
<td>15.6</td>
<td>21.0</td>
<td>2.1</td>
<td>1.75</td>
<td>7.2</td>
<td><0.05</td>
</tr>
<tr>
<td>Slightly</td>
<td>32.4</td>
<td>17.4</td>
<td>3.5</td>
<td>1.95</td>
<td>3</td>
<td>01</td>
</tr>
<tr>
<td>Very</td>
<td>35.2</td>
<td>7.3</td>
<td>3.5</td>
<td>2.0</td>
<td>7.2</td>
<td><0.05</td>
</tr>
</tbody>
</table>

DOI: https://doi.org/10.31004/ijmst.v2i2.296
Lisensi: Creative Commons Attribution 4.0 International (CC BY 4.0)
The analysis in table 9 investigated the satisfaction levels regarding educational outcomes achieved through the utilization of big data technologies among 150 students and 20 teachers. Results revealed a statistically significant difference among the satisfaction levels (F(4, 168) = 3.21, p < 0.05). Post-hoc tests indicated significant differences between "Very dissatisfied" and "Dissatisfied" (p = 0.003), as well as between "Neutral" and "Satisfied" (p = 0.032). However, no significant differences were found between "Satisfied" and "Very satisfied" (p = 0.112). Overall, the findings suggest varying degrees of satisfaction with the educational outcomes associated with big data technologies.

4. DISCUSSION

The results obtained from the investigation shed light on several key aspects relevant to the hypotheses proposed in this study. Firstly, regarding the hypothesis that increased utilization of big data technologies is positively correlated with a higher frequency of interaction among faculty, researchers, and practitioners in educational settings, the findings provide substantial support. The analysis revealed a significant association between being a student or a teacher and the frequency of interaction with big data technologies, indicating that both groups engage more frequently with these technologies in their professional endeavors. This finding aligns with previous research by Ray and Saeed (2018), who emphasized the importance of technology-enhanced learning environments in fostering collaboration and interaction among stakeholders in education.

Furthermore, the hypothesis suggesting that faculty training positively influences the integration of big data technologies in higher education settings is corroborated by the results. The regression analysis demonstrated that as the level of training increases, respondents are more likely to have received professional development opportunities related to big data technologies. This finding is consistent with the work of Butson and Daniel (2017), who highlighted the importance of faculty readiness and competence in leveraging big data for educational purposes.

In terms of institutional support, the findings provide compelling evidence to support the hypothesis that institutional support significantly facilitates the
successful integration of big data technologies in higher education. The analysis of accessibility levels of resources and support services revealed a clear positive correlation between the accessibility level and the mean ratings provided by both students and teachers. This underscores the importance of enhancing institutional support mechanisms to promote the effective utilization of big data technologies in educational settings, as suggested by Al-Rahmi et al. (2020).

Regarding student readiness, including technological proficiency and willingness to engage, the results provide mixed support for the hypothesis. While the analysis of comfort levels with technology tools indicated that both students and teachers generally feel comfortable with technology for academic purposes, teachers exhibited a higher level of comfort overall. This suggests that while technological proficiency may vary among students, teachers tend to have a greater readiness to engage with technology, potentially due to their professional experience and familiarity with educational technology, as discussed by Avramides et al. (2015).

Lastly, the hypothesis proposing that the perceived effectiveness of big data technologies mediates the relationship between integration efforts and outcomes in higher education settings is supported by the findings. The analysis of satisfaction levels with educational outcomes achieved through the utilization of big data technologies revealed a significant difference among satisfaction levels, indicating varying degrees of perceived effectiveness. This underscores the importance of considering the perceived effectiveness of big data technologies in assessing their impact on educational outcomes, as suggested by Martínez-Abad et al. (2018).

In summary, the discussion of the results provides empirical support for the hypotheses proposed in this study, highlighting the complex interplay of factors influencing the integration and effectiveness of big data technologies in higher education settings. These findings contribute to the ongoing discourse on leveraging data-driven approaches to enhance educational practices and outcomes.

5. CONCLUSION

This study offers valuable insights into the integration and impact of big data technologies in higher education settings. The comprehensive analysis of data gathered from students and teachers across various faculties and universities provides a nuanced understanding of the current landscape and challenges surrounding the adoption of big data in educational contexts. The findings reveal several important trends and implications. Firstly, there is a clear gender imbalance among students and teachers, with more male representation observed. This underscores the need for targeted efforts to promote gender diversity and inclusivity in higher education, as diverse perspectives contribute to a richer learning environment.

Secondly, the analysis highlights the prevalence and importance of big data technologies in educational activities and research projects. Predictive analytics software emerged as the most frequently used technology, indicating its widespread adoption and significance in enhancing educational endeavors. However, there are also areas for improvement, such as increasing engagement with academic advising tools, which have shown relatively lower levels of utilization.

Moreover, the study underscores the critical role of institutional support and faculty training in facilitating the successful integration of big data technologies. Enhancing accessibility to resources and support services is essential to promote effective utilization and maximize the benefits of these technologies in educational settings.

Furthermore, the findings emphasize the importance of considering student readiness and perceptions in the implementation of big data initiatives. While both students and teachers generally exhibit comfort with technology tools, teachers demonstrate a higher level of readiness, highlighting the need for targeted interventions to support student engagement and proficiency in utilizing big data technologies for learning.

Overall, this study contributes to the growing body of literature on big data in higher education by providing empirical evidence and actionable insights for educators, policymakers, and practitioners. By addressing the identified challenges and leveraging the opportunities presented by big data technologies, institutions can enhance teaching and learning experiences, ultimately empowering students to succeed in an increasingly data-driven world.

Recommendation

Promote Gender Diversity: Implement initiatives aimed at promoting gender diversity among students and faculty members. Encourage the participation of underrepresented genders in STEM fields through targeted recruitment efforts, mentorship programs, and inclusive policies.

Invest in Faculty Training: Provide comprehensive...
training programs for faculty members to enhance their proficiency in utilizing big data technologies for teaching, research, and administrative tasks. Offer workshops, seminars, and online courses to equip educators with the necessary skills and knowledge to effectively integrate data-driven approaches into their practices.

Enhance Institutional Support: Allocate resources and support services to facilitate the successful implementation of big data initiatives across educational institutions. Develop institutional policies and infrastructure to promote collaboration, innovation, and knowledge sharing in the use of data analytics tools and techniques.

Foster Student Engagement: Foster a culture of student engagement and participation in big data-related activities and projects. Offer experiential learning opportunities, research internships, and extracurricular activities that allow students to apply data analytics skills in real-world contexts and contribute to meaningful projects.

Promote Data Literacy: Integrate data literacy education into the curriculum to equip students with the necessary knowledge and skills to analyze, interpret, and communicate data effectively. Incorporate hands-on activities, case studies, and collaborative projects to develop students’ critical thinking and data analysis abilities.

Establish Collaborative Partnerships: Foster partnerships with industry, government agencies, and non-profit organizations to facilitate collaborative research, data sharing, and knowledge exchange. Leverage external expertise and resources to address complex challenges and opportunities in the application of big data technologies in higher education.

Evaluate and Adapt: Continuously evaluate the effectiveness and impact of big data initiatives through systematic assessment and feedback mechanisms. Monitor key performance indicators, solicit stakeholder input, and iterate on strategies to ensure alignment with institutional goals and priorities.

Acknowledgement

I would like to express my sincere gratitude to Musawer Hakimi for his invaluable support and assistance throughout the duration of this research project. His dedication and expertise have been instrumental in shaping the direction and outcomes of this study. I am deeply thankful for his insightful contributions and unwavering commitment to academic excellence. Additionally, I would like to extend my appreciation to all participants who generously contributed their time and insights to this research endeavor. Their cooperation and willingness to share their experiences have enriched the findings and enhanced the quality of this study.
REFERENCE

DOI: https://doi.org/10.31004/jistm.v2i2.296

Lisensi: Creative Commons Attribution 4.0 International (CC BY 4.0)

DOI: https://doi.org/10.31004/ijmst.v2i2.296

Lisensi: Creative Commons Attribution 4.0 International (CC BY 4.0)