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Abstrak

Perubahan iklim global menuntut pengembangan sistem pemodelan yang akurat, adaptif, dan responsif untuk mendukung
upaya mitigasi serta adaptasi di berbagai sektor. Penelitian ini mengembangkan sebuah kerangka pemodelan iklim berbasis
kecerdasan buatan yang mengintegrasikan fusi data satelit multisumber dengan arsitektur pembelajaran mendalam. Model
dirancang dengan pendekatan Long Short-Term Memory (LSTM) yang dikombinasikan dengan mekanisme attention dan
Convolutional Neural Networks (CNN) untuk mengekstraksi fitur spasial. Sistem dilatih menggunakan data satelit MODIS,
Sentinel-2, dan ERA5 pada periode 2018-2024, mencakup 156 titik pengamatan di wilayah Indonesia dengan resolusi
temporal harian dan resolusi spasial 1 kilometer. Proses fusi data dilakukan menggunakan teknik weighted averaging
berdasarkan tingkat kepercayaan sensor dan konsistensi temporal. Validasi model dilakukan menggunakan data observasi
stasiun meteorologi BMKG dengan metrik Root Mean Square Error (RMSE), Mean Absolute Error (MAE), serta koefisien
korelasi. Hasil penelitian menunjukkan bahwa model hybrid CNN-LSTM dengan mekanisme attention mencapai RMSE
0,87°C untuk prediksi suhu, 12,3% untuk kelembapan relatif, dan 8,9 mm untuk curah hujan pada horizon prediksi tujuh
hari. Analisis ablasi mengonfirmasi bahwa fusi multisensor meningkatkan akurasi sebesar 23,4% dibandingkan pemodelan
berbasis satu sumber data satelit. Kerangka kerja ini memberikan kontribusi penting bagi pengembangan sistem peringatan
dini iklim dan pengambilan keputusan berbasis data pada sektor pertanian, manajemen sumber daya air, serta mitigasi
bencana iklim.

Kata Kunci: Pemodelan Iklim, Kecerdasan Buatan, Fusi Data Satelit, Pembelajaran Mendalam, LSTM, Prediksi Cuaca

1. Pendahuluan

Perubahan iklim telah menjadi salah satu tantangan terbesar yang dihadapi umat manusia di abad ke-21.
Berdasarkan laporan Panel Antarpemerintah tentang Perubahan Iklim (IPCC) tahun 2023, suhu rata-rata global
telah meningkat 1,1°C dibandingkan era pra-industri, dengan proyeksi peningkatan mencapai 1,5°C pada tahun
2030 jika tidak ada upaya mitigasi yang signifikan. Indonesia sebagai negara kepulauan dengan garis pantai
terpanjang kedua di dunia menghadapi risiko tinggi dari dampak perubahan iklim, termasuk kenaikan permukaan
laut, perubahan pola curah hujan, dan peningkatan frekuensi kejadian cuaca ekstrem (Harsono, 2024; Zhao et al.,
2021).

Sistem pemodelan iklim konvensional berbasis persamaan fisika atmosfer telah digunakan selama beberapa
dekade untuk memahami dinamika sistem iklim. Namun, model-model numerik seperti Global Climate Model
(GCM) dan Regional Climate Model (RCM) memiliki keterbatasan dalam hal resolusi spasial, kebutuhan
komputasi yang tinggi, dan kemampuan terbatas dalam menangkap variabilitas lokal. Berdasarkan studi yang
dilakukan oleh Chen dkk. (2023), model iklim tradisional memerlukan waktu komputasi mencapai 72 jam untuk
simulasi 30 hari pada resolusi 25 kilometer, dengan akurasi prediksi yang menurun signifikan pada horizon
waktu lebih dari 10 hari.

Perkembangan teknologi kecerdasan buatan (Al) dan pembelajaran mesin (machine learning) dalam dekade
terakhir membuka peluang baru dalam pemodelan sistem kompleks, termasuk sistem iklim. Arsitektur
pembelajaran mendalam seperti Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), dan
Transformer telah menunjukkan kemampuan luar biasa dalam menangkap pola temporal dalam data deret waktu.
Sementara itu, Convolutional Neural Networks (CNN) terbukti efektif dalam mengekstraksi fitur spasial dari
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data citra satelit. Kombinasi kedua pendekatan ini, yang dikenal sebagai model hybrid, menawarkan solusi untuk
mengatasi keterbatasan model konvensional.

Ketersediaan data satelit penginderaan jauh dengan resolusi tinggi dari berbagai platform seperti MODIS
(Moderate Resolution Imaging Spectroradiometer), Sentinel-2, dan reanalisis ERA5 dari European Centre for
Medium-Range Weather Forecasts (ECMWF) memberikan sumber data yang kaya untuk pelatihan model Al.
Data-data ini mencakup berbagai parameter iklim seperti suhu permukaan, kelembaban, tutupan awan, radiasi,
dan curah hujan dengan cakupan global dan resolusi temporal yang tinggi. Namun, setiap sensor memiliki
karakteristik, kelebihan, dan keterbatasan yang berbeda, sehingga diperlukan teknik fusi data yang tepat untuk
mengoptimalkan kualitas input model.

Tabel 1 menunjukkan perbandingan akurasi berbagai metode pemodelan iklim berdasarkan studi terdahulu, yang
mengindikasikan potensi signifikan dari pendekatan berbasis pembelajaran mendalam.

Tabel 1. Perbandingan Metode Pemodelan Iklim

Metode RMSE Suhu (°C) RMSE Hujan (mm) Waktu Komputasi Referensi
WRF-ARW 2,34 18,7 72 jam Chen (2023)
LSTM Tunggal 1,52 14,3 2,5 jam Rasp (2020)
CNN-LSTM 1,18 11,2 4,1 jam Liu (2022)
Transformer 0,96 9,8 6,7 jam Lam (2023)

Sumber: Kompilasi dari berbagai studi terdahulu
1.2 Rumusan Masalah
Berdasarkan latar belakang tersebut, penelitian ini merumuskan beberapa pertanyaan penelitian sebagai berikut:

e Bagaimana merancang kerangka kerja yang efektif untuk mengintegrasikan data satelit multisumber dalam
konteks pemodelan iklim?

e Arsitektur pembelajaran mendalam seperti apa yang paling sesuai untuk menangkap dinamika spasial-
temporal sistem iklim?

e Seberapa besar peningkatan akurasi prediksi iklim dengan menggunakan pendekatan fusi data dibandingkan
penggunaan data satelit tunggal?

e Bagaimana performa model yang dikembangkan dibandingkan dengan metode pemodelan iklim

konvensional dalam hal akurasi dan efisiensi komputasi?

1.3 Tujuan Penelitian
Penelitian ini bertujuan untuk:

e Mengembangkan kerangka kerja komprehensif untuk fusi data satelit multisumber dalam pemodelan iklim
berbasis Al

e Merancang dan mengimplementasikan arsitektur model hybrid CNN-LSTM dengan mekanisme attention
untuk prediksi parameter iklim

e Mengevaluasi kontribusi masing-masing sumber data satelit terhadap akurasi model melalui analisis ablasi

e Memvalidasi model yang dikembangkan menggunakan data observasi stasiun meteorologi untuk

memastikan keandalan prediksi
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1.4 Manfaat Penelitian

Penelitian ini memberikan kontribusi teoretis dalam pengembangan metodologi pemodelan iklim berbasis data
dengan mengintegrasikan teknik pembelajaran mendalam terkini dan fusi multisensor. Secara praktis, kerangka
kerja yang dikembangkan dapat diimplementasikan untuk sistem peringatan dini cuaca ekstrem, perencanaan
sektor pertanian, manajemen sumber daya air, dan mitigasi risiko bencana hidrometeorologis di Indonesia.

2. Tinjauan Pustaka
2.1 Sistem Iklim dan Tantangan Pemodelan

Sistem iklim Bumi merupakan sistem kompleks yang melibatkan interaksi nonlinear antara atmosfer, hidrosfer,
kriosfer, litosfer, dan biosfer. Pemodelan sistem iklim secara tradisional menggunakan persamaan diferensial
parsial yang menggambarkan hukum konservasi massa, momentum, dan energi. Namun, kompleksitas interaksi
antarkomponen dan proses fisika skala kecil yang tidak dapat diselesaikan secara eksplisit mengharuskan
penggunaan parametrisasi, yang menjadi sumber utama ketidakpastian dalam model iklim konvensional.

Penelitian oleh Schneider dkk. (2020) menunjukkan bahwa model iklim numerik memiliki bias sistematis dalam
merepresentasikan konveksi tropikal, interaksi awan-radiasi, dan proses turbulensi skala kecil. Bias ini
berdampak pada akurasi prediksi curah hujan regional dan respons sistem iklim terhadap perubahan forcing
antropogenik. Keterbatasan ini mendorong pengembangan pendekatan alternatif yang dapat mempelajari pola
kompleks langsung dari data observasi.

2.2 Pembelajaran Mendalam untuk Prediksi Deret Waktu

Arsitektur Long Short-Term Memory (LSTM) yang diperkenalkan oleh Hochreiter dan Schmidhuber (1997)
telah menjadi standar de facto untuk pemodelan deret waktu dalam berbagai domain. LSTM mengatasi masalah
vanishing gradient pada Recurrent Neural Network (RNN) tradisional melalui mekanisme gating yang
memungkinkan jaringan mempertahankan informasi jangka panjang. Dalam konteks data iklim, LSTM terbukti
mampu menangkap pola musiman, tren jangka panjang, dan variabilitas interannual seperti EI Nifio-Southern
Oscillation (ENSO).

Studi oleh Rasp dan Thuerey (2021) mendemonstrasikan bahwa model LSTM dapat mengungguli model
numerik Weather Research and Forecasting (WRF) untuk prediksi suhu dan curah hujan pada horizon waktu 1-3
hari, dengan keunggulan signifikan dalam efisiensi komputasi. Model LSTM memerlukan waktu inferensi
kurang dari 10 detik untuk prediksi 7 hari, dibandingkan dengan 24-48 jam untuk model WRF pada resolusi
yang sama.

Mekanisme attention, yang pertama kali diperkenalkan dalam pemrosesan bahasa alami oleh Bahdanau dkk.
(2015), memungkinkan model untuk fokus pada bagian input yang paling relevan untuk prediksi. Dalam konteks
deret waktu multivariat seperti data iklim, attention membantu model mengidentifikasi hubungan temporal dan
antarfitur yang kompleks. Zhang dkk. (2022) menunjukkan bahwa penambahan mekanisme attention pada
LSTM meningkatkan akurasi prediksi curah hujan sebesar 18% dibandingkan LSTM standar.

2.3 Convolutional Neural Networks untuk Data Spasial

Convolutional Neural Networks (CNN) dirancang untuk mengekstraksi fitur hierarkis dari data yang memiliki
struktur spasial, seperti citra satelit. Lapisan konvolusi menggunakan kernel yang dapat dipelajari untuk
mendeteksi pola lokal, sementara operasi pooling mengurangi dimensi dan meningkatkan invarian translasi.
Dalam analisis citra satelit meteorologi, CNN mampu mengenali struktur awan, front atmosfer, dan pola
sirkulasi yang kompleks.

Penelitian oleh Hilburn dkk. (2021) menggunakan CNN untuk mengklasifikasikan tipe awan dari data satelit
GOES-16 dengan akurasi mencapai 94,3%, melampaui metode klasifikasi tradisional berbasis ambang batas
spektral. CNN juga terbukti efektif untuk deteksi dan pelacakan sistem cuaca ekstrem seperti siklon tropis dan
mesoscale convective systems. Shi dkk. (2020) mengembangkan arsitektur ConvLSTM yang mengintegrasikan
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operasi konvolusi ke dalam struktur LSTM, memungkinkan pemodelan dinamika spasial-temporal secara
simultan.

2.4 Fusi Data Satelit Multisensor

Setiap platform satelit memiliki karakteristik sensor yang berbeda dalam hal resolusi spasial, temporal, spektral,
dan radiometrik. MODIS menyediakan data dengan 36 kanal spektral pada resolusi spasial 250 meter hingga 1
kilometer, dengan frekuensi pengamatan harian. Sentinel-2 menawarkan resolusi spasial lebih tinggi (10-60
meter) tetapi dengan revisit time 5 hari. ERA5 memberikan data reanalisis dengan asimilasi observasi dari
berbagai sumber, termasuk satelit, stasiun permukaan, dan radiosonde.

Teknik fusi data bertujuan mengkombinasikan informasi dari berbagai sumber untuk menghasilkan produk yang
lebih akurat dan komprehensif dibandingkan data individual. Pendekatan fusi dapat dikategorikan menjadi tiga
level: pixel-level fusion, feature-level fusion, dan decision-level fusion. Xu dkk. (2023) mengembangkan metode
deep learning-based fusion yang menggunakan encoder terpisah untuk setiap sumber data, kemudian
menggabungkan representasi laten melalui mekanisme cross-attention. Pendekatan ini meningkatkan akurasi
estimasi evapotranspirasi sebesar 27% dibandingkan metode weighted averaging konvensional.

2.5 Penelitian Terdahulu dan Gap Riset

Beberapa penelitian telah mengeksplorasi aplikasi pembelajaran mendalam untuk pemodelan iklim. Lam dkk.
(2023) mengembangkan GraphCast, model berbasis Graph Neural Network yang mencapai akurasi setara atau
melampaui sistem prediksi numerik terbaik untuk forecast global hingga 10 hari. Pathak dkk. (2022)
memperkenalkan FourCastNet berbasis Vision Transformer yang mampu menghasilkan prediksi ensembel
dalam hitungan detik.

Namun, mayoritas penelitian tersebut fokus pada prediksi global dengan data reanalisis beresolusi rendah (25-
100 kilometer), sementara aplikasi regional di wilayah tropis maritim seperti Indonesia memerlukan resolusi
lebih tinggi dan pertimbangan khusus terhadap konveksi tropikal. Selain itu, eksplorasi sistematis terhadap
kontribusi berbagai sumber data satelit melalui teknik fusi yang optimal masih terbatas. Penelitian ini mengisi
gap tersebut dengan mengembangkan kerangka kerja yang spesifik untuk wilayah Indonesia, mengintegrasikan
data satelit multisensor beresolusi tinggi, dan melakukan analisis ablasi komprehensif untuk memahami
kontribusi masing-masing komponen.

3. Metode Penelitian
3.1 Desain Penelitian

Penelitian ini menggunakan pendekatan kuantitatif eksperimental dengan pengembangan model pembelajaran
mendalam untuk prediksi parameter iklim. Proses penelitian meliputi lima tahap utama: pengumpulan dan
preprocessing data, desain arsitektur model, pelatihan dan optimasi, validasi, serta analisis ablasi. Kerangka kerja
dikembangkan menggunakan Python dengan library TensorFlow 2.14 dan PyTorch 2.1 untuk implementasi
model pembelajaran mendalam.

3.2 Data dan Sumber Data

3.2.1 Data Satelit

Penelitian ini menggunakan tiga sumber data satelit utama:

MODIS Terra/Aqua: Data produk MOD11A1 (suhu permukaan tanah), MOD13A1 (indeks vegetasi), dan
MODO6 (properti awan) dengan resolusi spasial 1 kilometer dan temporal harian untuk periode 2018-2024. Data
diunduh melalui NASA Earthdata dengan total volume 487 GB mencakup wilayah Indonesia (95°E-141°E,
11°S-6°N).

Sentinel-2: Citra multispektral dengan 13 kanal pada resolusi 10-60 meter. Data diperoleh melalui Copernicus
Open Access Hub, diresample ke resolusi 1 kilometer untuk konsistensi dengan data lain. Digunakan untuk
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ekstraksi indikator permukaan seperti Normalized Difference Vegetation Index (NDVI) dan Normalized
Difference Water Index (NDWI).

ERA5 Reanalysis: Data reanalisis jam-jam dari ECMWF mencakup 37 variabel meteorologi pada 37 level
tekanan. Variabel utama meliputi suhu udara 2 meter, kelembaban relatif, komponen angin u dan v, tekanan
permukaan, dan curah hujan. Data diakses melalui Climate Data Store dengan resolusi spasial 0,25° yang
kemudian diinterpolasi ke grid 1 kilometer menggunakan metode bilinear.

3.2.2 Data Validasi

Data observasi permukaan diperoleh dari 156 stasiun meteorologi Badan Meteorologi, Klimatologi, dan
Geofisika (BMKG) yang tersebar di seluruh Indonesia. Data meliputi pengukuran suhu udara, kelembaban
relatif, curah hujan, tekanan udara, dan kecepatan angin dengan interval pencatatan 10 menit yang diagregasi
menjadi data jam-jam dan harian. Proses quality control diterapkan untuk menghilangkan outlier dan data yang
hilang menggunakan metode Isolated Forest dan interpolasi linear untuk gap kurang dari 6 jam.

3.3 Preprocessing dan Fusi Data

3.3.1 Preprocessing Data Satelit

Setiap sumber data satelit melalui tahap preprocessing spesifik:

Koreksi Atmosferik: Data MODIS dan Sentinel-2 dikoreksi untuk efek hamburan dan absorpsi atmosfer
menggunakan algoritma 6S (Second Simulation of Satellite Signal in the Solar Spectrum). Koreksi awan
dilakukan dengan mendeteksi piksel yang terkontaminasi awan menggunakan threshold Cloud Optical Thickness
> 0,4 dan menghapusnya dari analisis.

Proyeksi dan Registrasi: Semua data diproyeksikan ke sistem koordinat WGS84 UTM Zone 50S dan diregister
ke grid referensi 1 kilometer menggunakan nearest neighbor untuk data kategorikal dan bilinear interpolation
untuk data kontinu. Proses ini memastikan co-registration spatial yang akurat antarberbagai sumber data.

Normalisasi Temporal: Data satelit dengan waktu akuisisi berbeda disinkronisasi ke timestamp UTC harian
pukul 00:00. Untuk data dengan resolusi temporal lebih tinggi (ERA5 jam-jam), dilakukan agregasi
menggunakan rata-rata harian untuk variabel intensif (suhu, kelembaban) dan akumulasi untuk variabel ekstensif
(curah hujan).

3.3.2 Teknik Fusi Data

Fusi data multisensor dilakukan pada level fitur menggunakan weighted averaging adaptif. Bobot untuk setiap
sensor ditentukan berdasarkan tiga faktor:

Pertama, kualitas data yang diukur melalui signal-to-noise ratio (SNR) dan persentase data yang hilang. Sensor
dengan SNR lebih tinggi dan data lebih lengkap mendapat bobot lebih besar. Kedua, kepercayaan temporal yang
dihitung dari konsistensi data dalam window waktu 7 hari. Sensor yang menunjukkan variabilitas konsisten
dengan pola klimatologi mendapat bobot lebih tinggi. Ketiga, validasi lokal terhadap data stasiun BMKG
terdekat (dalam radius 25 kilometer). Sensor yang menunjukkan korelasi lebih tinggi dengan observasi
permukaan mendapat prioritas.

Formula pembobotan adaptif dinyatakan sebagai:
wi=(xSNR i+pxCi+tyxRi)/Z(axSNR j+p*xCj+yxRj)
dimana w_i adalah bobot untuk sensor i, SNR_i adalah signal-to-noise ratio, C_i adalah konsistensi temporal,

R i adalah korelasi dengan stasiun validasi, dan a, B, ¥ adalah hyperparameter yang dioptimasi melalui grid
search (nilai optimal: 0=0,4, $=0,3, y=0,3).
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3.4 Arsitektur Model

3.4.1 Model Hybrid CNN-LSTM

Avrsitektur model yang dikembangkan terdiri dari tiga komponen utama: CNN encoder untuk ekstraksi fitur
spasial, LSTM untuk pemodelan temporal, dan mekanisme attention untuk fokus adaptif pada fitur relevan.

CNN Encoder: Terdiri dari 4 blok konvolusi dengan arsitektur: Conv2D(64 filters, 3x3) — BatchNorm —
ReLU — MaxPool(2x2) — Conv2D(128 filters, 3x3) — BatchNorm — ReLU — MaxPool(2x2) —
Conv2D(256 filters, 3x3) — BatchNorm — ReLU — MaxPool(2x2) — Conv2D(512 filters, 3x3) —
BatchNorm — ReLU — GlobalAveragePooling. Output encoder adalah vektor fitur 512-dimensi yang
merepresentasikan pola spasial dari citra satelit multi-kanal.

LSTM Layers: Dua lapis LSTM bidireksional dengan 256 unit pada setiap arah (total 512 unit per lapis).
Bidirectional LSTM memungkinkan model mengakses informasi dari masa lalu dan masa depan dalam
sequence, meningkatkan kemampuan menangkap pola temporal kompleks. Dropout 0,3 diterapkan antarlapis
untuk regularisasi dan mencegah overfitting.

Attention Mechanism: Implementasi scaled dot-product attention yang menghitung skor relevansi untuk setiap
timestep dalam sequence. Mekanisme ini memungkinkan model memberikan bobot lebih besar pada informasi
yang lebih relevan untuk prediksi. Attention weights divisualisasikan untuk interpretabilitas model.

Dense Layers: Tiga fully connected layers dengan konfigurasi Dense(256) — ReLU — Dropout(0,2) —
Dense(128) — ReLU — Dense(output_dim). Output dimension disesuaikan dengan jumlah parameter yang
diprediksi (3 untuk suhu, kelembaban, curah hujan) dan horizon prediksi (7 hari, sehingga total output =3 x 7 =
21 nilai).

3.4.2 Input dan Output Model

Model menerima input berupa sequence 14 hari data historis dengan dimensi (batch_size, 14, height, width,
channels), dimana channels mencakup 18 variabel dari fusi data satelit: 8 kanal MODIS (suhu permukaan,
NDVI, EVI, albedo, emissivitas, fraksi awan, optical thickness, effective radius), 4 kanal Sentinel-2 (NDVI,
NDWI, NDBI, reflektansi komposit), dan 6 variabel ERA5 (suhu 2m, kelembaban, u-wind, v-wind, tekanan,
curah hujan akumulasi). Output model adalah prediksi 7 hari ke depan untuk 3 variabel target: suhu permukaan
(°C), kelembaban relatif (%), dan curah hujan harian (mm).

3.5 Pelatihan Model

Data dibagi menjadi training set (70%, periode 2018-2022), validation set (15%, periode Januari-Juni 2023), dan
test set (15%, periode Juli-Desember 2023). Pembagian temporal digunakan untuk memastikan model dievaluasi
pada data yang benar-benar unseen dan mencegah data leakage.

Fungsi loss yang digunakan adalah kombinasi Mean Squared Error (MSE) untuk akurasi point prediction dan
Mean Absolute Percentage Error (MAPE) untuk robustness terhadap outlier:

L =0,7 x MSE + 0,3 x MAPE

Optimasi dilakukan menggunakan Adam optimizer dengan learning rate awal 0,001 dan learning rate scheduling
yang mengurangi learning rate sebesar 50% jika validation loss tidak membaik dalam 5 epoch. Gradient clipping
dengan threshold 1,0 diterapkan untuk stabilitas training. Batch size diset 32 dengan total 150 epoch pelatihan.
Early stopping dengan patience 15 epoch digunakan untuk mencegah overfitting.

Data augmentation diterapkan selama training meliputi: random spatial crop (10% margin), random brightness
adjustment (+15%), dan random temporal jittering (£1 hari). Teknik ini meningkatkan robustness model
terhadap variasi data dan mengurangi overfitting.
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3.6 Evaluasi dan Validasi
Performa model dievaluasi menggunakan metrik standar:

Root Mean Square Error (RMSE): Mengukur magnitude rata-rata error dalam unit yang sama dengan variabel
target

RMSE =~(X(y_pred -y_true)?/n)
Mean Absolute Error (MAE): Mengukur rata-rata absolute error, lebih robust terhadap outlier
MAE =Xy pred-y_true|/n

Koefisien Korelasi Pearson (r): Mengukur kekuatan hubungan linear antara prediksi dan observasi

r = Cov(y_pred, y true)/(c_pred x o_true)
Nash-Sutcliffe Efficiency (NSE): Mengukur kemampuan prediktif relatif terhadap baseline mean

NSE =1-2(y pred-y true)?/2(y_true - y)?
Validasi spasial dilakukan dengan membandingkan prediksi model terhadap observasi stasiun BMKG pada 156
lokasi. Analisis error spasial membantu mengidentifikasi wilayah dengan performa model yang baik dan area
yang memerlukan improvement. Validasi temporal mengevaluasi akurasi prediksi pada berbagai horizon waktu
(1, 3,5, 7 hari) untuk memahami degradasi akurasi seiring bertambahnya lead time.

3.7 Analisis Ablasi

Studi ablasi dilakukan untuk memahami kontribusi masing-masing komponen terhadap performa model. Lima
varian model dilatih dan dievaluasi:

Model A: CNN-LSTM dengan fusi multisensor (model lengkap)
Model B: CNN-LSTM dengan MODIS saja

Model C: CNN-LSTM dengan ERAS saja

Model D: LSTM tanpa CNN (hanya temporal modeling)

Model E: CNN-LSTM tanpa attention mechanism

Perbandingan performa antarvarian memungkinkan kuantifikasi kontribusi relatif dari fusi data, ekstraksi fitur
spasial (CNN), dan mekanisme attention.

4. Hasil dan Pembahasan
4.1 Performa Model Utama

Model hybrid CNN-LSTM dengan fusi multisensor (Model A) menunjukkan performa yang sangat baik pada
test set dengan RMSE 0,87°C untuk prediksi suhu, 12,3% untuk kelembaban relatif, dan 8,9 mm untuk curah
hujan pada horizon prediksi 7 hari. Koefisien korelasi mencapai 0,94 untuk suhu, 0,89 untuk kelembaban, dan
0,82 untuk curah hujan, mengindikasikan kemampuan model menangkap variabilitas temporal parameter iklim
dengan akurat.

Tabel 2 menyajikan perbandingan performa model pada berbagai horizon prediksi. Terdapat degradasi akurasi
yang wajar seiring bertambahnya lead time, namun model tetap menunjukkan skill prediktif hingga hari ke-7.
Untuk suhu, RMSE meningkat dari 0,52°C pada hari pertama menjadi 0,87°C pada hari ketujuh. Pola serupa
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terlihat pada kelembaban dan curah hujan, dengan curah hujan menunjukkan degradasi paling signifikan karena
sifat kejadian hujan yang lebih stokastik.

Tabel 2. Performa Model pada Berbagai Horizon Prediksi

Horizon RMSE Suhu (°C) RMSE RH (%) RMSE Hujan (mm) r Suhu
Hari 1 0,52 8,1 5,2 0,97
Hari 3 0,68 104 6,8 0,96
Hari 5 0,78 115 7,9 0,95
Hari 7 0,87 12,3 8,9 0,94

Sumber: Hasil analisis penelitian
4.2 Hasil Analisis Ablasi

Analisis ablasi mengungkapkan kontribusi signifikan dari setiap komponen model. Tabel 3 menyajikan
perbandingan performa kelima varian model pada horizon prediksi 7 hari.

Tabel 3. Hasil Analisis Ablasi Model

Varian Model RMSE Suhu (°C) RMSE RH (%) RMSE Hujan (mm) NSE
A: CNN-LSTM Fusi 0,87 12,3 8,9 0,87
B: MODIS Saja 1,24 16,8 12,4 0,73
C: ERAS Saja 1,07 14,2 10,6 0,79
D: LSTM Tanpa CNN 1,38 18,5 14,2 0,68
E: Tanpa Attention 0,95 13,7 9,8 0,83

Sumber: Hasil analisis penelitian

Model A (lengkap dengan fusi multisensor) menunjukkan performa terbaik dengan RMSE suhu 0,87°C. Model
B yang hanya menggunakan MODIS mengalami penurunan akurasi sebesar 42,5% (RMSE 1,24°C), sementara
Model C dengan ERAS5 saja mengalami penurunan 23,0% (RMSE 1,07°C). Ini mengonfirmasi bahwa fusi data
multisensor memberikan peningkatan akurasi rata-rata 23,4% dibandingkan penggunaan data satelit tunggal
terbaik (ERADS).

Penghapusan komponen CNN (Model D) menghasilkan degradasi performa paling signifikan, dengan RMSE
meningkat menjadi 1,38°C (peningkatan 58,6%). Hal ini mengindikasikan pentingnya ekstraksi fitur spasial dari
citra satelit untuk menangkap pola cuaca yang memiliki struktur spasial yang kuat seperti sistem konvektif dan
front. Sementara itu, penghapusan mekanisme attention (Model E) menyebabkan penurunan performa moderat
dengan RMSE 0,95°C (peningkatan 9,2%), menunjukkan bahwa attention mechanism berkontribusi namun
bukan komponen paling kritis.

4.3 Validasi Spasial

Validasi spasial terhadap 156 stasiun BMKG menunjukkan bahwa model memiliki performa konsisten di
sebagian besar wilayah Indonesia. Analisis error spasial mengungkapkan bahwa RMSE terendah (0,62°C)
ditemukan di wilayah Jawa dan Bali, sementara RMSE tertinggi (1,24°C) terjadi di Papua dan Maluku.
Perbedaan ini dapat dijelaskan oleh beberapa faktor: kepadatan data training yang lebih tinggi di Jawa,
kompleksitas topografi yang lebih rendah, dan karakteristik konveksi yang lebih terorganisir.
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Wilayah pegunungan menunjukkan error yang lebih tinggi dibandingkan dataran rendah, yang konsisten dengan
tantangan model konvensional dalam merepresentasikan orographic forcing. Namun, model berbasis Al tetap
menunjukkan performa superior dibandingkan interpolasi sederhana dari ERA5, dengan perbaikan RMSE rata-
rata 34% di wilayah pegunungan.

Untuk curah hujan, model menunjukkan skill prediktif lebih tinggi untuk kejadian hujan stratiform dibandingkan
konvektif. Critical Success Index (CSI) untuk deteksi hari hujan (threshold 1 mm) mencapai 0,76, sementara
untuk hujan lebat (threshold 50 mm) turun menjadi 0,54. Ini mengindikasikan bahwa meskipun model dapat
menangkap pola curah hujan umum dengan baik, prediksi kejadian ekstrem masih memerlukan improvement.

4.4 Interpretabilitas Model

Visualisasi attention weights memberikan insight tentang mekanisme pengambilan keputusan model. Analisis
menunjukkan bahwa untuk prediksi suhu, model memberikan attention tertinggi pada data 3-5 hari sebelumnya,
konsisten dengan time scale persistensi suhu di tropikal. Untuk curah hujan, attention lebih terdistribusi pada
window 7-10 hari, mencerminkan pengaruh mode variabilitas seperti Madden-Julian Oscillation yang memiliki
periode 30-60 hari.

Gradient-weighted Class Activation Mapping (Grad-CAM) diterapkan pada CNN encoder untuk
memvisualisasikan region spasial yang paling berpengaruh terhadap prediksi. Untuk kasus prediksi curah hujan
tinggi, model menunjukkan aktivasi tinggi pada region dengan tutupan awan konvektif dan Sea Surface
Temperature anomaly positif, konsisten dengan pemahaman fisika pembentukan hujan konvektif.

4.5 Pembahasan

Hasil penelitian ini mengonfirmasi potensi signifikan pendekatan pembelajaran mendalam untuk pemodelan
iklim, terutama untuk aplikasi prediksi jangka pendek hingga menengah. Model yang dikembangkan
menunjukkan performa setara atau lebih baik dibandingkan sistem prediksi numerik konvensional pada horizon
1-7 hari, dengan keunggulan substansial dalam efisiensi komputasi. Waktu inferensi model hanya 8,3 detik
untuk prediksi 7 hari pada 156 lokasi, dibandingkan dengan 48-72 jam untuk model WRF pada resolusi
comparable.

Keunggulan utama pendekatan pembelajaran mendalam terletak pada kemampuannya mempelajari pola
kompleks dari data observasi tanpa memerlukan spesifikasi eksplisit parametrisasi fisika. Model dapat
menangkap hubungan nonlinear antara berbagai variabel meteorologi dan mengidentifikasi fitur prediktif yang
mungkin tidak obvious dari perspektif dinamika atmosfer tradisional. Namun, pendekatan ini juga memiliki
keterbatasan, terutama terkait interpretabilitas fisika dan kemampuan generalisasi pada kondisi di luar distribusi
data training.

Analisis ablasi memberikan bukti empiris tentang pentingnya fusi data multisensor. Peningkatan akurasi 23,4%
dari fusi dibandingkan data tunggal terbaik mengindikasikan bahwa berbagai platform satelit memberikan
informasi komplementer yang berharga. MODIS menyediakan informasi detail tentang properti permukaan dan
awan, Sentinel-2 memberikan resolusi spasial tinggi untuk fitur permukaan, sementara ERA5 menawarkan
konsistensi temporal dan cakupan variabel yang komprehensif.

Kontribusi CNN dalam ekstraksi fitur spasial sangat substansial, sebagaimana ditunjukkan oleh degradasi 58,6%
saat komponen ini dihilangkan. Ini menegaskan bahwa fenomena cuaca memiliki struktur spasial yang kuat dan
tidak dapat dimodelkan secara adequat hanya dengan pendekatan time-series univariat atau multivariat tanpa
informasi spasial.

Validasi spasial mengungkapkan variabilitas performa model yang terkait dengan karakteristik geografis dan
klimatologi. Performa lebih baik di wilayah dengan data training lebih padat dan topografi lebih sederhana
menunjukkan pentingnya representasi training yang memadai. Untuk aplikasi operasional, strategi ensemble
yang mengkombinasikan prediksi dari model yang dilatih pada subset regional yang berbeda mungkin dapat
meningkatkan robustness.
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Keterbatasan dalam memprediksi kejadian curah hujan ekstrem mencerminkan tantangan fundamental dalam
pemodelan proses konvektif yang memiliki skala spasial dan temporal yang kecil. Peningkatan resolusi temporal
data training dan penggunaan data radar cuaca yang memiliki resolusi temporal lebih tinggi (5-10 menit)
mungkin dapat meningkatkan kemampuan model dalam aspek ini.

5. Kesimpulan dan Saran

Penelitian ini berhasil mengembangkan kerangka kerja komprehensif untuk pemodelan iklim berbasis
kecerdasan buatan yang mengintegrasikan fusi data satelit multisumber dengan arsitektur pembelajaran
mendalam. Berdasarkan analisis terhadap data periode 2018-2024 di wilayah Indonesia, dapat ditarik beberapa
kesimpulan utama:Pertama, model hybrid CNN-LSTM dengan mekanisme attention yang dikembangkan
menunjukkan performa sangat baik untuk prediksi parameter iklim dengan RMSE 0,87°C untuk suhu, 12,3%
untuk kelembaban relatif, dan 8,9 mm untuk curah hujan pada horizon prediksi 7 hari. Performa ini setara atau
melampaui sistem prediksi numerik konvensional, dengan keunggulan signifikan dalam efisiensi komputasi (8,3
detik vs 48-72 jam). Kedua, fusi data multisensor terbukti memberikan kontribusi substansial terhadap akurasi
model, dengan peningkatan 23,4% dibandingkan penggunaan data satelit tunggal terbaik. Kombinasi data
MODIS, Sentinel-2, dan ERA5 memberikan informasi komplementer yang memperkaya representasi sistem
iklim. Ketiga, analisis ablasi mengonfirmasi bahwa komponen CNN untuk ekstraksi fitur spasial merupakan
elemen paling kritis dalam arsitektur model, dengan kontribusi terhadap akurasi mencapai 58,6%. Ini
menegaskan pentingnya informasi struktur spasial dalam pemodelan fenomena cuaca. Keempat, validasi spasial
menunjukkan bahwa model memiliki performa konsisten di sebagian besar wilayah Indonesia, dengan performa
terbaik di wilayah dengan topografi sederhana dan kepadatan data training tinggi. Namun, prediksi kejadian
curah hujan ekstrem masih memerlukan peningkatan lebih lanjut.
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