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Abstrak  

 
Perubahan iklim global menuntut pengembangan sistem pemodelan yang akurat, adaptif, dan responsif untuk mendukung 

upaya mitigasi serta adaptasi di berbagai sektor. Penelitian ini mengembangkan sebuah kerangka pemodelan iklim berbasis 

kecerdasan buatan yang mengintegrasikan fusi data satelit multisumber dengan arsitektur pembelajaran mendalam. Model 

dirancang dengan pendekatan Long Short-Term Memory (LSTM) yang dikombinasikan dengan mekanisme attention dan 

Convolutional Neural Networks (CNN) untuk mengekstraksi fitur spasial. Sistem dilatih menggunakan data satelit MODIS, 

Sentinel-2, dan ERA5 pada periode 2018–2024, mencakup 156 titik pengamatan di wilayah Indonesia dengan resolusi 

temporal harian dan resolusi spasial 1 kilometer. Proses fusi data dilakukan menggunakan teknik weighted averaging 

berdasarkan tingkat kepercayaan sensor dan konsistensi temporal. Validasi model dilakukan menggunakan data observasi 

stasiun meteorologi BMKG dengan metrik Root Mean Square Error (RMSE), Mean Absolute Error (MAE), serta koefisien 

korelasi. Hasil penelitian menunjukkan bahwa model hybrid CNN-LSTM dengan mekanisme attention mencapai RMSE 

0,87°C untuk prediksi suhu, 12,3% untuk kelembapan relatif, dan 8,9 mm untuk curah hujan pada horizon prediksi tujuh 

hari. Analisis ablasi mengonfirmasi bahwa fusi multisensor meningkatkan akurasi sebesar 23,4% dibandingkan pemodelan 

berbasis satu sumber data satelit. Kerangka kerja ini memberikan kontribusi penting bagi pengembangan sistem peringatan 

dini iklim dan pengambilan keputusan berbasis data pada sektor pertanian, manajemen sumber daya air, serta mitigasi 

bencana iklim. 

 

Kata Kunci: Pemodelan Iklim, Kecerdasan Buatan, Fusi Data Satelit, Pembelajaran Mendalam, LSTM, Prediksi Cuaca 

1. Pendahuluan 

Perubahan iklim telah menjadi salah satu tantangan terbesar yang dihadapi umat manusia di abad ke-21. 

Berdasarkan laporan Panel Antarpemerintah tentang Perubahan Iklim (IPCC) tahun 2023, suhu rata-rata global 

telah meningkat 1,1°C dibandingkan era pra-industri, dengan proyeksi peningkatan mencapai 1,5°C pada tahun 

2030 jika tidak ada upaya mitigasi yang signifikan. Indonesia sebagai negara kepulauan dengan garis pantai 

terpanjang kedua di dunia menghadapi risiko tinggi dari dampak perubahan iklim, termasuk kenaikan permukaan 

laut, perubahan pola curah hujan, dan peningkatan frekuensi kejadian cuaca ekstrem (Harsono, 2024; Zhao et al., 

2021). 

Sistem pemodelan iklim konvensional berbasis persamaan fisika atmosfer telah digunakan selama beberapa 

dekade untuk memahami dinamika sistem iklim. Namun, model-model numerik seperti Global Climate Model 

(GCM) dan Regional Climate Model (RCM) memiliki keterbatasan dalam hal resolusi spasial, kebutuhan 

komputasi yang tinggi, dan kemampuan terbatas dalam menangkap variabilitas lokal. Berdasarkan studi yang 

dilakukan oleh Chen dkk. (2023), model iklim tradisional memerlukan waktu komputasi mencapai 72 jam untuk 

simulasi 30 hari pada resolusi 25 kilometer, dengan akurasi prediksi yang menurun signifikan pada horizon 

waktu lebih dari 10 hari. 

Perkembangan teknologi kecerdasan buatan (AI) dan pembelajaran mesin (machine learning) dalam dekade 

terakhir membuka peluang baru dalam pemodelan sistem kompleks, termasuk sistem iklim. Arsitektur 

pembelajaran mendalam seperti Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), dan 

Transformer telah menunjukkan kemampuan luar biasa dalam menangkap pola temporal dalam data deret waktu. 

Sementara itu, Convolutional Neural Networks (CNN) terbukti efektif dalam mengekstraksi fitur spasial dari 
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data citra satelit. Kombinasi kedua pendekatan ini, yang dikenal sebagai model hybrid, menawarkan solusi untuk 

mengatasi keterbatasan model konvensional. 

Ketersediaan data satelit penginderaan jauh dengan resolusi tinggi dari berbagai platform seperti MODIS 

(Moderate Resolution Imaging Spectroradiometer), Sentinel-2, dan reanalisis ERA5 dari European Centre for 

Medium-Range Weather Forecasts (ECMWF) memberikan sumber data yang kaya untuk pelatihan model AI. 

Data-data ini mencakup berbagai parameter iklim seperti suhu permukaan, kelembaban, tutupan awan, radiasi, 

dan curah hujan dengan cakupan global dan resolusi temporal yang tinggi. Namun, setiap sensor memiliki 

karakteristik, kelebihan, dan keterbatasan yang berbeda, sehingga diperlukan teknik fusi data yang tepat untuk 

mengoptimalkan kualitas input model. 

Tabel 1 menunjukkan perbandingan akurasi berbagai metode pemodelan iklim berdasarkan studi terdahulu, yang 

mengindikasikan potensi signifikan dari pendekatan berbasis pembelajaran mendalam. 

Tabel 1. Perbandingan Metode Pemodelan Iklim 

Metode RMSE Suhu (°C) RMSE Hujan (mm) Waktu Komputasi Referensi 

WRF-ARW 2,34 18,7 72 jam Chen (2023) 

LSTM Tunggal 1,52 14,3 2,5 jam Rasp (2020) 

CNN-LSTM 1,18 11,2 4,1 jam Liu (2022) 

Transformer 0,96 9,8 6,7 jam Lam (2023) 

Sumber: Kompilasi dari berbagai studi terdahulu 

1.2 Rumusan Masalah 

Berdasarkan latar belakang tersebut, penelitian ini merumuskan beberapa pertanyaan penelitian sebagai berikut: 

• Bagaimana merancang kerangka kerja yang efektif untuk mengintegrasikan data satelit multisumber dalam 

konteks pemodelan iklim? 

• Arsitektur pembelajaran mendalam seperti apa yang paling sesuai untuk menangkap dinamika spasial-

temporal sistem iklim? 

• Seberapa besar peningkatan akurasi prediksi iklim dengan menggunakan pendekatan fusi data dibandingkan 

penggunaan data satelit tunggal? 

• Bagaimana performa model yang dikembangkan dibandingkan dengan metode pemodelan iklim 

konvensional dalam hal akurasi dan efisiensi komputasi? 

1.3 Tujuan Penelitian 

Penelitian ini bertujuan untuk: 

• Mengembangkan kerangka kerja komprehensif untuk fusi data satelit multisumber dalam pemodelan iklim 

berbasis AI 

• Merancang dan mengimplementasikan arsitektur model hybrid CNN-LSTM dengan mekanisme attention 

untuk prediksi parameter iklim 

• Mengevaluasi kontribusi masing-masing sumber data satelit terhadap akurasi model melalui analisis ablasi 

• Memvalidasi model yang dikembangkan menggunakan data observasi stasiun meteorologi untuk 

memastikan keandalan prediksi 
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1.4 Manfaat Penelitian 

Penelitian ini memberikan kontribusi teoretis dalam pengembangan metodologi pemodelan iklim berbasis data 

dengan mengintegrasikan teknik pembelajaran mendalam terkini dan fusi multisensor. Secara praktis, kerangka 

kerja yang dikembangkan dapat diimplementasikan untuk sistem peringatan dini cuaca ekstrem, perencanaan 

sektor pertanian, manajemen sumber daya air, dan mitigasi risiko bencana hidrometeorologis di Indonesia. 

2. Tinjauan Pustaka 

2.1 Sistem Iklim dan Tantangan Pemodelan 

Sistem iklim Bumi merupakan sistem kompleks yang melibatkan interaksi nonlinear antara atmosfer, hidrosfer, 

kriosfer, litosfer, dan biosfer. Pemodelan sistem iklim secara tradisional menggunakan persamaan diferensial 

parsial yang menggambarkan hukum konservasi massa, momentum, dan energi. Namun, kompleksitas interaksi 

antarkomponen dan proses fisika skala kecil yang tidak dapat diselesaikan secara eksplisit mengharuskan 

penggunaan parametrisasi, yang menjadi sumber utama ketidakpastian dalam model iklim konvensional. 

Penelitian oleh Schneider dkk. (2020) menunjukkan bahwa model iklim numerik memiliki bias sistematis dalam 

merepresentasikan konveksi tropikal, interaksi awan-radiasi, dan proses turbulensi skala kecil. Bias ini 

berdampak pada akurasi prediksi curah hujan regional dan respons sistem iklim terhadap perubahan forcing 

antropogenik. Keterbatasan ini mendorong pengembangan pendekatan alternatif yang dapat mempelajari pola 

kompleks langsung dari data observasi. 

2.2 Pembelajaran Mendalam untuk Prediksi Deret Waktu 

Arsitektur Long Short-Term Memory (LSTM) yang diperkenalkan oleh Hochreiter dan Schmidhuber (1997) 

telah menjadi standar de facto untuk pemodelan deret waktu dalam berbagai domain. LSTM mengatasi masalah 

vanishing gradient pada Recurrent Neural Network (RNN) tradisional melalui mekanisme gating yang 

memungkinkan jaringan mempertahankan informasi jangka panjang. Dalam konteks data iklim, LSTM terbukti 

mampu menangkap pola musiman, tren jangka panjang, dan variabilitas interannual seperti El Niño-Southern 

Oscillation (ENSO). 

Studi oleh Rasp dan Thuerey (2021) mendemonstrasikan bahwa model LSTM dapat mengungguli model 

numerik Weather Research and Forecasting (WRF) untuk prediksi suhu dan curah hujan pada horizon waktu 1-3 

hari, dengan keunggulan signifikan dalam efisiensi komputasi. Model LSTM memerlukan waktu inferensi 

kurang dari 10 detik untuk prediksi 7 hari, dibandingkan dengan 24-48 jam untuk model WRF pada resolusi 

yang sama. 

Mekanisme attention, yang pertama kali diperkenalkan dalam pemrosesan bahasa alami oleh Bahdanau dkk. 

(2015), memungkinkan model untuk fokus pada bagian input yang paling relevan untuk prediksi. Dalam konteks 

deret waktu multivariat seperti data iklim, attention membantu model mengidentifikasi hubungan temporal dan 

antarfitur yang kompleks. Zhang dkk. (2022) menunjukkan bahwa penambahan mekanisme attention pada 

LSTM meningkatkan akurasi prediksi curah hujan sebesar 18% dibandingkan LSTM standar. 

2.3 Convolutional Neural Networks untuk Data Spasial 

Convolutional Neural Networks (CNN) dirancang untuk mengekstraksi fitur hierarkis dari data yang memiliki 

struktur spasial, seperti citra satelit. Lapisan konvolusi menggunakan kernel yang dapat dipelajari untuk 

mendeteksi pola lokal, sementara operasi pooling mengurangi dimensi dan meningkatkan invarian translasi. 

Dalam analisis citra satelit meteorologi, CNN mampu mengenali struktur awan, front atmosfer, dan pola 

sirkulasi yang kompleks. 

Penelitian oleh Hilburn dkk. (2021) menggunakan CNN untuk mengklasifikasikan tipe awan dari data satelit 

GOES-16 dengan akurasi mencapai 94,3%, melampaui metode klasifikasi tradisional berbasis ambang batas 

spektral. CNN juga terbukti efektif untuk deteksi dan pelacakan sistem cuaca ekstrem seperti siklon tropis dan 

mesoscale convective systems. Shi dkk. (2020) mengembangkan arsitektur ConvLSTM yang mengintegrasikan 
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operasi konvolusi ke dalam struktur LSTM, memungkinkan pemodelan dinamika spasial-temporal secara 

simultan. 

2.4 Fusi Data Satelit Multisensor 

Setiap platform satelit memiliki karakteristik sensor yang berbeda dalam hal resolusi spasial, temporal, spektral, 

dan radiometrik. MODIS menyediakan data dengan 36 kanal spektral pada resolusi spasial 250 meter hingga 1 

kilometer, dengan frekuensi pengamatan harian. Sentinel-2 menawarkan resolusi spasial lebih tinggi (10-60 

meter) tetapi dengan revisit time 5 hari. ERA5 memberikan data reanalisis dengan asimilasi observasi dari 

berbagai sumber, termasuk satelit, stasiun permukaan, dan radiosonde. 

Teknik fusi data bertujuan mengkombinasikan informasi dari berbagai sumber untuk menghasilkan produk yang 

lebih akurat dan komprehensif dibandingkan data individual. Pendekatan fusi dapat dikategorikan menjadi tiga 

level: pixel-level fusion, feature-level fusion, dan decision-level fusion. Xu dkk. (2023) mengembangkan metode 

deep learning-based fusion yang menggunakan encoder terpisah untuk setiap sumber data, kemudian 

menggabungkan representasi laten melalui mekanisme cross-attention. Pendekatan ini meningkatkan akurasi 

estimasi evapotranspirasi sebesar 27% dibandingkan metode weighted averaging konvensional. 

2.5 Penelitian Terdahulu dan Gap Riset 

Beberapa penelitian telah mengeksplorasi aplikasi pembelajaran mendalam untuk pemodelan iklim. Lam dkk. 

(2023) mengembangkan GraphCast, model berbasis Graph Neural Network yang mencapai akurasi setara atau 

melampaui sistem prediksi numerik terbaik untuk forecast global hingga 10 hari. Pathak dkk. (2022) 

memperkenalkan FourCastNet berbasis Vision Transformer yang mampu menghasilkan prediksi ensembel 

dalam hitungan detik. 

Namun, mayoritas penelitian tersebut fokus pada prediksi global dengan data reanalisis beresolusi rendah (25-

100 kilometer), sementara aplikasi regional di wilayah tropis maritim seperti Indonesia memerlukan resolusi 

lebih tinggi dan pertimbangan khusus terhadap konveksi tropikal. Selain itu, eksplorasi sistematis terhadap 

kontribusi berbagai sumber data satelit melalui teknik fusi yang optimal masih terbatas. Penelitian ini mengisi 

gap tersebut dengan mengembangkan kerangka kerja yang spesifik untuk wilayah Indonesia, mengintegrasikan 

data satelit multisensor beresolusi tinggi, dan melakukan analisis ablasi komprehensif untuk memahami 

kontribusi masing-masing komponen. 

3. Metode Penelitian 

3.1 Desain Penelitian 

Penelitian ini menggunakan pendekatan kuantitatif eksperimental dengan pengembangan model pembelajaran 

mendalam untuk prediksi parameter iklim. Proses penelitian meliputi lima tahap utama: pengumpulan dan 

preprocessing data, desain arsitektur model, pelatihan dan optimasi, validasi, serta analisis ablasi. Kerangka kerja 

dikembangkan menggunakan Python dengan library TensorFlow 2.14 dan PyTorch 2.1 untuk implementasi 

model pembelajaran mendalam. 

3.2 Data dan Sumber Data 

3.2.1 Data Satelit 

Penelitian ini menggunakan tiga sumber data satelit utama: 

MODIS Terra/Aqua: Data produk MOD11A1 (suhu permukaan tanah), MOD13A1 (indeks vegetasi), dan 

MOD06 (properti awan) dengan resolusi spasial 1 kilometer dan temporal harian untuk periode 2018-2024. Data 

diunduh melalui NASA Earthdata dengan total volume 487 GB mencakup wilayah Indonesia (95°E-141°E, 

11°S-6°N). 

Sentinel-2: Citra multispektral dengan 13 kanal pada resolusi 10-60 meter. Data diperoleh melalui Copernicus 

Open Access Hub, diresample ke resolusi 1 kilometer untuk konsistensi dengan data lain. Digunakan untuk 
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ekstraksi indikator permukaan seperti Normalized Difference Vegetation Index (NDVI) dan Normalized 

Difference Water Index (NDWI). 

ERA5 Reanalysis: Data reanalisis jam-jam dari ECMWF mencakup 37 variabel meteorologi pada 37 level 

tekanan. Variabel utama meliputi suhu udara 2 meter, kelembaban relatif, komponen angin u dan v, tekanan 

permukaan, dan curah hujan. Data diakses melalui Climate Data Store dengan resolusi spasial 0,25° yang 

kemudian diinterpolasi ke grid 1 kilometer menggunakan metode bilinear. 

3.2.2 Data Validasi 

Data observasi permukaan diperoleh dari 156 stasiun meteorologi Badan Meteorologi, Klimatologi, dan 

Geofisika (BMKG) yang tersebar di seluruh Indonesia. Data meliputi pengukuran suhu udara, kelembaban 

relatif, curah hujan, tekanan udara, dan kecepatan angin dengan interval pencatatan 10 menit yang diagregasi 

menjadi data jam-jam dan harian. Proses quality control diterapkan untuk menghilangkan outlier dan data yang 

hilang menggunakan metode Isolated Forest dan interpolasi linear untuk gap kurang dari 6 jam. 

3.3 Preprocessing dan Fusi Data 

3.3.1 Preprocessing Data Satelit 

Setiap sumber data satelit melalui tahap preprocessing spesifik: 

Koreksi Atmosferik: Data MODIS dan Sentinel-2 dikoreksi untuk efek hamburan dan absorpsi atmosfer 

menggunakan algoritma 6S (Second Simulation of Satellite Signal in the Solar Spectrum). Koreksi awan 

dilakukan dengan mendeteksi piksel yang terkontaminasi awan menggunakan threshold Cloud Optical Thickness 

> 0,4 dan menghapusnya dari analisis. 

Proyeksi dan Registrasi: Semua data diproyeksikan ke sistem koordinat WGS84 UTM Zone 50S dan diregister 

ke grid referensi 1 kilometer menggunakan nearest neighbor untuk data kategorikal dan bilinear interpolation 

untuk data kontinu. Proses ini memastikan co-registration spatial yang akurat antarberbagai sumber data. 

Normalisasi Temporal: Data satelit dengan waktu akuisisi berbeda disinkronisasi ke timestamp UTC harian 

pukul 00:00. Untuk data dengan resolusi temporal lebih tinggi (ERA5 jam-jam), dilakukan agregasi 

menggunakan rata-rata harian untuk variabel intensif (suhu, kelembaban) dan akumulasi untuk variabel ekstensif 

(curah hujan). 

3.3.2 Teknik Fusi Data 

Fusi data multisensor dilakukan pada level fitur menggunakan weighted averaging adaptif. Bobot untuk setiap 

sensor ditentukan berdasarkan tiga faktor: 

Pertama, kualitas data yang diukur melalui signal-to-noise ratio (SNR) dan persentase data yang hilang. Sensor 

dengan SNR lebih tinggi dan data lebih lengkap mendapat bobot lebih besar. Kedua, kepercayaan temporal yang 

dihitung dari konsistensi data dalam window waktu 7 hari. Sensor yang menunjukkan variabilitas konsisten 

dengan pola klimatologi mendapat bobot lebih tinggi. Ketiga, validasi lokal terhadap data stasiun BMKG 

terdekat (dalam radius 25 kilometer). Sensor yang menunjukkan korelasi lebih tinggi dengan observasi 

permukaan mendapat prioritas. 

Formula pembobotan adaptif dinyatakan sebagai: 

w_i = (α × SNR_i + β × C_i + γ × R_i) / Σ(α × SNR_j + β × C_j + γ × R_j) 

dimana w_i adalah bobot untuk sensor i, SNR_i adalah signal-to-noise ratio, C_i adalah konsistensi temporal, 

R_i adalah korelasi dengan stasiun validasi, dan α, β, γ adalah hyperparameter yang dioptimasi melalui grid 

search (nilai optimal: α=0,4, β=0,3, γ=0,3). 
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3.4 Arsitektur Model 

3.4.1 Model Hybrid CNN-LSTM 

Arsitektur model yang dikembangkan terdiri dari tiga komponen utama: CNN encoder untuk ekstraksi fitur 

spasial, LSTM untuk pemodelan temporal, dan mekanisme attention untuk fokus adaptif pada fitur relevan. 

CNN Encoder: Terdiri dari 4 blok konvolusi dengan arsitektur: Conv2D(64 filters, 3×3) → BatchNorm → 

ReLU → MaxPool(2×2) → Conv2D(128 filters, 3×3) → BatchNorm → ReLU → MaxPool(2×2) → 

Conv2D(256 filters, 3×3) → BatchNorm → ReLU → MaxPool(2×2) → Conv2D(512 filters, 3×3) → 

BatchNorm → ReLU → GlobalAveragePooling. Output encoder adalah vektor fitur 512-dimensi yang 

merepresentasikan pola spasial dari citra satelit multi-kanal. 

LSTM Layers: Dua lapis LSTM bidireksional dengan 256 unit pada setiap arah (total 512 unit per lapis). 

Bidirectional LSTM memungkinkan model mengakses informasi dari masa lalu dan masa depan dalam 

sequence, meningkatkan kemampuan menangkap pola temporal kompleks. Dropout 0,3 diterapkan antarlapis 

untuk regularisasi dan mencegah overfitting. 

Attention Mechanism: Implementasi scaled dot-product attention yang menghitung skor relevansi untuk setiap 

timestep dalam sequence. Mekanisme ini memungkinkan model memberikan bobot lebih besar pada informasi 

yang lebih relevan untuk prediksi. Attention weights divisualisasikan untuk interpretabilitas model. 

Dense Layers: Tiga fully connected layers dengan konfigurasi Dense(256) → ReLU → Dropout(0,2) → 

Dense(128) → ReLU → Dense(output_dim). Output dimension disesuaikan dengan jumlah parameter yang 

diprediksi (3 untuk suhu, kelembaban, curah hujan) dan horizon prediksi (7 hari, sehingga total output = 3 × 7 = 

21 nilai). 

3.4.2 Input dan Output Model 

Model menerima input berupa sequence 14 hari data historis dengan dimensi (batch_size, 14, height, width, 

channels), dimana channels mencakup 18 variabel dari fusi data satelit: 8 kanal MODIS (suhu permukaan, 

NDVI, EVI, albedo, emissivitas, fraksi awan, optical thickness, effective radius), 4 kanal Sentinel-2 (NDVI, 

NDWI, NDBI, reflektansi komposit), dan 6 variabel ERA5 (suhu 2m, kelembaban, u-wind, v-wind, tekanan, 

curah hujan akumulasi). Output model adalah prediksi 7 hari ke depan untuk 3 variabel target: suhu permukaan 

(°C), kelembaban relatif (%), dan curah hujan harian (mm). 

3.5 Pelatihan Model 

Data dibagi menjadi training set (70%, periode 2018-2022), validation set (15%, periode Januari-Juni 2023), dan 

test set (15%, periode Juli-Desember 2023). Pembagian temporal digunakan untuk memastikan model dievaluasi 

pada data yang benar-benar unseen dan mencegah data leakage. 

Fungsi loss yang digunakan adalah kombinasi Mean Squared Error (MSE) untuk akurasi point prediction dan 

Mean Absolute Percentage Error (MAPE) untuk robustness terhadap outlier: 

L = 0,7 × MSE + 0,3 × MAPE 

Optimasi dilakukan menggunakan Adam optimizer dengan learning rate awal 0,001 dan learning rate scheduling 

yang mengurangi learning rate sebesar 50% jika validation loss tidak membaik dalam 5 epoch. Gradient clipping 

dengan threshold 1,0 diterapkan untuk stabilitas training. Batch size diset 32 dengan total 150 epoch pelatihan. 

Early stopping dengan patience 15 epoch digunakan untuk mencegah overfitting. 

Data augmentation diterapkan selama training meliputi: random spatial crop (10% margin), random brightness 

adjustment (±15%), dan random temporal jittering (±1 hari). Teknik ini meningkatkan robustness model 

terhadap variasi data dan mengurangi overfitting. 
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3.6 Evaluasi dan Validasi 

Performa model dievaluasi menggunakan metrik standar: 

Root Mean Square Error (RMSE): Mengukur magnitude rata-rata error dalam unit yang sama dengan variabel 

target 

RMSE = √(Σ(y_pred - y_true)² / n) 

Mean Absolute Error (MAE): Mengukur rata-rata absolute error, lebih robust terhadap outlier 

MAE = Σ|y_pred - y_true| / n 

Koefisien Korelasi Pearson (r): Mengukur kekuatan hubungan linear antara prediksi dan observasi 

r = Cov(y_pred, y_true) / (σ_pred × σ_true) 

Nash-Sutcliffe Efficiency (NSE): Mengukur kemampuan prediktif relatif terhadap baseline mean 

NSE = 1 - Σ(y_pred - y_true)² / Σ(y_true - ȳ)² 

Validasi spasial dilakukan dengan membandingkan prediksi model terhadap observasi stasiun BMKG pada 156 

lokasi. Analisis error spasial membantu mengidentifikasi wilayah dengan performa model yang baik dan area 

yang memerlukan improvement. Validasi temporal mengevaluasi akurasi prediksi pada berbagai horizon waktu 

(1, 3, 5, 7 hari) untuk memahami degradasi akurasi seiring bertambahnya lead time. 

3.7 Analisis Ablasi 

Studi ablasi dilakukan untuk memahami kontribusi masing-masing komponen terhadap performa model. Lima 

varian model dilatih dan dievaluasi: 

• Model A: CNN-LSTM dengan fusi multisensor (model lengkap) 

• Model B: CNN-LSTM dengan MODIS saja 

• Model C: CNN-LSTM dengan ERA5 saja 

• Model D: LSTM tanpa CNN (hanya temporal modeling) 

• Model E: CNN-LSTM tanpa attention mechanism 

Perbandingan performa antarvarian memungkinkan kuantifikasi kontribusi relatif dari fusi data, ekstraksi fitur 

spasial (CNN), dan mekanisme attention. 

4. Hasil dan Pembahasan 

4.1 Performa Model Utama 

Model hybrid CNN-LSTM dengan fusi multisensor (Model A) menunjukkan performa yang sangat baik pada 

test set dengan RMSE 0,87°C untuk prediksi suhu, 12,3% untuk kelembaban relatif, dan 8,9 mm untuk curah 

hujan pada horizon prediksi 7 hari. Koefisien korelasi mencapai 0,94 untuk suhu, 0,89 untuk kelembaban, dan 

0,82 untuk curah hujan, mengindikasikan kemampuan model menangkap variabilitas temporal parameter iklim 

dengan akurat. 

Tabel 2 menyajikan perbandingan performa model pada berbagai horizon prediksi. Terdapat degradasi akurasi 

yang wajar seiring bertambahnya lead time, namun model tetap menunjukkan skill prediktif hingga hari ke-7. 

Untuk suhu, RMSE meningkat dari 0,52°C pada hari pertama menjadi 0,87°C pada hari ketujuh. Pola serupa 
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terlihat pada kelembaban dan curah hujan, dengan curah hujan menunjukkan degradasi paling signifikan karena 

sifat kejadian hujan yang lebih stokastik. 

Tabel 2. Performa Model pada Berbagai Horizon Prediksi 

Horizon RMSE Suhu (°C) RMSE RH (%) RMSE Hujan (mm) r Suhu 

Hari 1 0,52 8,1 5,2 0,97 

Hari 3 0,68 10,4 6,8 0,96 

Hari 5 0,78 11,5 7,9 0,95 

Hari 7 0,87 12,3 8,9 0,94 

Sumber: Hasil analisis penelitian 

4.2 Hasil Analisis Ablasi 

Analisis ablasi mengungkapkan kontribusi signifikan dari setiap komponen model. Tabel 3 menyajikan 

perbandingan performa kelima varian model pada horizon prediksi 7 hari. 

Tabel 3. Hasil Analisis Ablasi Model 

Varian Model RMSE Suhu (°C) RMSE RH (%) RMSE Hujan (mm) NSE 

A: CNN-LSTM Fusi 0,87 12,3 8,9 0,87 

B: MODIS Saja 1,24 16,8 12,4 0,73 

C: ERA5 Saja 1,07 14,2 10,6 0,79 

D: LSTM Tanpa CNN 1,38 18,5 14,2 0,68 

E: Tanpa Attention 0,95 13,7 9,8 0,83 

Sumber: Hasil analisis penelitian 

Model A (lengkap dengan fusi multisensor) menunjukkan performa terbaik dengan RMSE suhu 0,87°C. Model 

B yang hanya menggunakan MODIS mengalami penurunan akurasi sebesar 42,5% (RMSE 1,24°C), sementara 

Model C dengan ERA5 saja mengalami penurunan 23,0% (RMSE 1,07°C). Ini mengonfirmasi bahwa fusi data 

multisensor memberikan peningkatan akurasi rata-rata 23,4% dibandingkan penggunaan data satelit tunggal 

terbaik (ERA5). 

Penghapusan komponen CNN (Model D) menghasilkan degradasi performa paling signifikan, dengan RMSE 

meningkat menjadi 1,38°C (peningkatan 58,6%). Hal ini mengindikasikan pentingnya ekstraksi fitur spasial dari 

citra satelit untuk menangkap pola cuaca yang memiliki struktur spasial yang kuat seperti sistem konvektif dan 

front. Sementara itu, penghapusan mekanisme attention (Model E) menyebabkan penurunan performa moderat 

dengan RMSE 0,95°C (peningkatan 9,2%), menunjukkan bahwa attention mechanism berkontribusi namun 

bukan komponen paling kritis. 

4.3 Validasi Spasial 

Validasi spasial terhadap 156 stasiun BMKG menunjukkan bahwa model memiliki performa konsisten di 

sebagian besar wilayah Indonesia. Analisis error spasial mengungkapkan bahwa RMSE terendah (0,62°C) 

ditemukan di wilayah Jawa dan Bali, sementara RMSE tertinggi (1,24°C) terjadi di Papua dan Maluku. 

Perbedaan ini dapat dijelaskan oleh beberapa faktor: kepadatan data training yang lebih tinggi di Jawa, 

kompleksitas topografi yang lebih rendah, dan karakteristik konveksi yang lebih terorganisir. 
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Wilayah pegunungan menunjukkan error yang lebih tinggi dibandingkan dataran rendah, yang konsisten dengan 

tantangan model konvensional dalam merepresentasikan orographic forcing. Namun, model berbasis AI tetap 

menunjukkan performa superior dibandingkan interpolasi sederhana dari ERA5, dengan perbaikan RMSE rata-

rata 34% di wilayah pegunungan. 

Untuk curah hujan, model menunjukkan skill prediktif lebih tinggi untuk kejadian hujan stratiform dibandingkan 

konvektif. Critical Success Index (CSI) untuk deteksi hari hujan (threshold 1 mm) mencapai 0,76, sementara 

untuk hujan lebat (threshold 50 mm) turun menjadi 0,54. Ini mengindikasikan bahwa meskipun model dapat 

menangkap pola curah hujan umum dengan baik, prediksi kejadian ekstrem masih memerlukan improvement. 

4.4 Interpretabilitas Model 

Visualisasi attention weights memberikan insight tentang mekanisme pengambilan keputusan model. Analisis 

menunjukkan bahwa untuk prediksi suhu, model memberikan attention tertinggi pada data 3-5 hari sebelumnya, 

konsisten dengan time scale persistensi suhu di tropikal. Untuk curah hujan, attention lebih terdistribusi pada 

window 7-10 hari, mencerminkan pengaruh mode variabilitas seperti Madden-Julian Oscillation yang memiliki 

periode 30-60 hari. 

Gradient-weighted Class Activation Mapping (Grad-CAM) diterapkan pada CNN encoder untuk 

memvisualisasikan region spasial yang paling berpengaruh terhadap prediksi. Untuk kasus prediksi curah hujan 

tinggi, model menunjukkan aktivasi tinggi pada region dengan tutupan awan konvektif dan Sea Surface 

Temperature anomaly positif, konsisten dengan pemahaman fisika pembentukan hujan konvektif. 

4.5 Pembahasan 

Hasil penelitian ini mengonfirmasi potensi signifikan pendekatan pembelajaran mendalam untuk pemodelan 

iklim, terutama untuk aplikasi prediksi jangka pendek hingga menengah. Model yang dikembangkan 

menunjukkan performa setara atau lebih baik dibandingkan sistem prediksi numerik konvensional pada horizon 

1-7 hari, dengan keunggulan substansial dalam efisiensi komputasi. Waktu inferensi model hanya 8,3 detik 

untuk prediksi 7 hari pada 156 lokasi, dibandingkan dengan 48-72 jam untuk model WRF pada resolusi 

comparable. 

Keunggulan utama pendekatan pembelajaran mendalam terletak pada kemampuannya mempelajari pola 

kompleks dari data observasi tanpa memerlukan spesifikasi eksplisit parametrisasi fisika. Model dapat 

menangkap hubungan nonlinear antara berbagai variabel meteorologi dan mengidentifikasi fitur prediktif yang 

mungkin tidak obvious dari perspektif dinamika atmosfer tradisional. Namun, pendekatan ini juga memiliki 

keterbatasan, terutama terkait interpretabilitas fisika dan kemampuan generalisasi pada kondisi di luar distribusi 

data training. 

Analisis ablasi memberikan bukti empiris tentang pentingnya fusi data multisensor. Peningkatan akurasi 23,4% 

dari fusi dibandingkan data tunggal terbaik mengindikasikan bahwa berbagai platform satelit memberikan 

informasi komplementer yang berharga. MODIS menyediakan informasi detail tentang properti permukaan dan 

awan, Sentinel-2 memberikan resolusi spasial tinggi untuk fitur permukaan, sementara ERA5 menawarkan 

konsistensi temporal dan cakupan variabel yang komprehensif. 

Kontribusi CNN dalam ekstraksi fitur spasial sangat substansial, sebagaimana ditunjukkan oleh degradasi 58,6% 

saat komponen ini dihilangkan. Ini menegaskan bahwa fenomena cuaca memiliki struktur spasial yang kuat dan 

tidak dapat dimodelkan secara adequat hanya dengan pendekatan time-series univariat atau multivariat tanpa 

informasi spasial. 

Validasi spasial mengungkapkan variabilitas performa model yang terkait dengan karakteristik geografis dan 

klimatologi. Performa lebih baik di wilayah dengan data training lebih padat dan topografi lebih sederhana 

menunjukkan pentingnya representasi training yang memadai. Untuk aplikasi operasional, strategi ensemble 

yang mengkombinasikan prediksi dari model yang dilatih pada subset regional yang berbeda mungkin dapat 

meningkatkan robustness. 
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Keterbatasan dalam memprediksi kejadian curah hujan ekstrem mencerminkan tantangan fundamental dalam 

pemodelan proses konvektif yang memiliki skala spasial dan temporal yang kecil. Peningkatan resolusi temporal 

data training dan penggunaan data radar cuaca yang memiliki resolusi temporal lebih tinggi (5-10 menit) 

mungkin dapat meningkatkan kemampuan model dalam aspek ini. 

5. Kesimpulan dan Saran 

Penelitian ini berhasil mengembangkan kerangka kerja komprehensif untuk pemodelan iklim berbasis 

kecerdasan buatan yang mengintegrasikan fusi data satelit multisumber dengan arsitektur pembelajaran 

mendalam. Berdasarkan analisis terhadap data periode 2018-2024 di wilayah Indonesia, dapat ditarik beberapa 

kesimpulan utama:Pertama, model hybrid CNN-LSTM dengan mekanisme attention yang dikembangkan 

menunjukkan performa sangat baik untuk prediksi parameter iklim dengan RMSE 0,87°C untuk suhu, 12,3% 

untuk kelembaban relatif, dan 8,9 mm untuk curah hujan pada horizon prediksi 7 hari. Performa ini setara atau 

melampaui sistem prediksi numerik konvensional, dengan keunggulan signifikan dalam efisiensi komputasi (8,3 

detik vs 48-72 jam). Kedua, fusi data multisensor terbukti memberikan kontribusi substansial terhadap akurasi 

model, dengan peningkatan 23,4% dibandingkan penggunaan data satelit tunggal terbaik. Kombinasi data 

MODIS, Sentinel-2, dan ERA5 memberikan informasi komplementer yang memperkaya representasi sistem 

iklim. Ketiga, analisis ablasi mengonfirmasi bahwa komponen CNN untuk ekstraksi fitur spasial merupakan 

elemen paling kritis dalam arsitektur model, dengan kontribusi terhadap akurasi mencapai 58,6%. Ini 

menegaskan pentingnya informasi struktur spasial dalam pemodelan fenomena cuaca. Keempat, validasi spasial 

menunjukkan bahwa model memiliki performa konsisten di sebagian besar wilayah Indonesia, dengan performa 

terbaik di wilayah dengan topografi sederhana dan kepadatan data training tinggi. Namun, prediksi kejadian 

curah hujan ekstrem masih memerlukan peningkatan lebih lanjut. 
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