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Abstrak  

Inspeksi integritas pipa pada industri vital seperti minyak dan gas saat ini masih bergantung pada metode manual yang kurang 

efisien dan berisiko tinggi. Permasalahan utama seperti korosi dapat menyebabkan kebocoran dan kerusakan lingkungan jika 

tidak terdeteksi secara dini dan akurat. Sebagai solusinya, teknologi deep learning menawarkan berbagai pendekatan, mulai 

dari klasifikasi hingga deteksi objek. Namun, pendekatan segmentasi semantik dipilih karena kemampuannya menawarkan 

potensi otomatisasi penuh untuk identifikasi area korosi secara presisi piksel-demi-piksel. Penelitian ini melakukan analisis 

komparatif antara kinerja arsitektur U-Net standar dengan DeepLabV3+ yang menggunakan backbone ResNet50. Kinerja 

kedua model dievaluasi pada 108 gambar asli, yang diproses melalui augmentasi menjadi total 1.261 data latih dan validasi. 

Perbandingan difokuskan pada dua tugas terpisah: segmentasi aset pipa utuh dan segmentasi korosi. Penilaian Intersection 

over Union (mIoU) menunjukkan DeepLabV3+ secara signifikan mengungguli U-Net dalam segmentasi aset dengan nilai 

0.862 berbanding 0.735. Sebaliknya, U-Net menunjukkan dkeunggulan tipis pada segmentasi korosi dengan mIoU 0.779 

berbanding 0.701. Secara komputasi, DeepLabV3+ dengan waktu rata-rata 0.44 detik terbukti jauh lebih efisien daripada U-

Net dengan rata-rata 1.24 detik. Dengan demikian, DeepLabV3+ menawarkan keseimbangan terbaik antara akurasi 

segmentasi aset yang superior dan efisiensi tinggi, menjadikannya kandidat model yang robust untuk pengembangan sistem 

inspeksi visual otomatis di lapangan. 

Kata kunci: Segmentasi Semantik, Korosi Pipa, Deep Learning, U-Net, DeepLabV3+ 

1. Latar Belakang 

Dalam industri minyak dan gas, pipa merupakan infrastruktur vital untuk mengalirkan fluida melintasi jarak yang 

jauh. Saat ini, industri minyak dan gas di Indonesia sedang menghadapi isu serius terkait keselamatan dan 

keandalan sistem perpipaannya [1]. Berbagai insiden telah menyoroti besarnya risiko ini, seperti terdapat sebuah 

studi kasus mengenai operasional bongkar muat BBM di Pelabuhan Tanjung Wangi, misalnya mengidentifikasi 

kebocoran yang disebabkan oleh korosi akibat air laut dan kegagalan paking pada sambungan pipa [2]. Ancaman 

paling signifikan terhadap integritas infrastruktur ini memang korosi, sebuah proses degradasi material alami yang 

jika tidak terdeteksi dapat menipiskan dinding pipa dan menyebabkan kegagalan. 

Secara historis, deteksi korosi bergantung pada inspeksi visual manual dan pengukuran ketebalan secara periodik. 

Metode tradisional ini memiliki keterbatasan yang signifikan: sangat subjektif, memakan proses yang lama, padat 

karya, dan tidak efisien untuk diterapkan pada jaringan pipa yang luas [3]. Keterbatasan ini mendorong perlunya 

adopsi teknologi yang lebih canggih untuk pemantauan kondisi pipa. 

Kemajuan dalam computer vision, yang didukung oleh deep learning, telah membuka peluang baru untuk 

otomatisasi inspeksi [4]. Secara khusus, teknik segmentasi semantik telah muncul sebagai solusi yang kuat. 

Berbeda dengan deteksi objek, segmentasi semantik mengklasifikasikan setiap piksel dalam gambar [5]. 

Kemampuan ini memungkinkan identifikasi dan kuantifikasi area korosi secara presisi, yang sangat penting untuk 

penilaian tingkat kerusakan. 

Dalam ranah segmentasi semantik, berbagai arsitektur deep learning telah dikembangkan. Arsitektur ini secara 

fundamental berbeda dari metode computer vision tradisional yang bergantung pada fitur hand-crafted, atau model 

klasifikasi CNN standar yang hanya memberikan satu label untuk keseluruhan gambar [6], [7]. Arsitektur pelopor 
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seperti FCN (Fully Convolutional Network) dan SegNet dirancang khusus untuk menghasilkan output berupa 

pixel-map yang padat. Terdapat dua model yang sering menjadi benchmark utama adalah U-Net dan DeepLabV3+ 

[8], [9]. U-Net, dengan arsitektur encoder-decoder simetris dan skip-connections, dikenal unggul dalam lokalisasi 

presisi dan merekonstruksi batas-batas objek yang halus [10], [11]. DeepLabV3+, di sisi lain, memanfaatkan 

Atrous Spatial Pyramid Pooling (ASPP) dan backbone pre-trained yang kuat untuk menangkap informasi 

kontekstual multi-skala secara efektif. 

Untuk menjawab tantangan keterbatasan inspeksi manual yang subjektif dan kurang efisien tersebut, diperlukan 

model segmentasi otomatis yang tidak hanya akurat dalam melokalisasi korosi, tetapi juga efisien secara komputasi 

untuk penerapan di lapangan. Meskipun U-Net dan DeepLabV3+ telah menjadi benchmark dalam segmentasi 

semantik, kinerja empirisnya dapat bervariasi. Segmentasi korosi menghadirkan tantangan unik karena teksturnya 

yang tidak teratur dan batas area yang seringkali tidak jelas. Oleh karena itu, penelitian ini bertujuan untuk 

melakukan analisis komparatif yang ketat antara U-Net dan DeepLabV3+ untuk tugas spesifik segmentasi pipa 

korosi. Penelitian ini sengaja membandingkan arsitektur U-Net standar dengan DeepLabV3+ yang mengandalkan 

backbone pre-trained (ResNet50) untuk mengevaluasi trade-off antara kesederhanaan arsitektur dan kekuatan 

transfer learning [12]. Evaluasi ini krusial untuk menentukan arsitektur mana yang paling optimal sebagai solusi 

praktis untuk tugas inspeksi pipa korosi, dengan fokus komparasi pada metrik akurasi (mIoU dan F1-Score) dan 

efisiensi waktu komputasi. 

2. Metode Penelitian 

Penelitian ini mengadopsi alur kerja metodologi data mining SEMMA, yang merupakan singkatan dari Sample, 

Explore, Modify, Model, dan Assess. Alur ini memastikan proses yang sistematis dari persiapan data hingga 

evaluasi model [13]. Ilustrasi metode penelitian dapat dilihat pada Gambar 1 berikut. 

 

Gambar 1. Metode Penelitian  

2.1. Sample 

Tahap awal melibatkan pengumpulan data. Dataset sekunder untuk penelitian ini terdiri dari 108 gambar RGB 

yang relevan. Dataset ini merupakan dataset publik yang sudah ada dan diperoleh langsung dari repositori 

Roboflow. Sampel ini dipilih karena telah merepresentasikan berbagai kondisi pipa, termasuk area pipa utuh dan 

area yang terdampak korosi dalam berbagai tingkat keparahan. 
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2.2. Explore 

Pada tahap eksplorasi, dataset mentah dianalisis untuk memahami karakteristiknya. Proses ini mencakup 

visualisasi data untuk mengidentifikasi variasi pencahayaan, tekstur korosi, dan skala objek. Ditemukan bahwa 

gambar memiliki resolusi yang beragam. Untuk menstandarisasi input model, semua gambar termasuk ground truth diubah ukurannya menjadi 
resolusi seragam 256x256 piksel. Dataset kemudian dibagi secara proporsional menjadi tiga himpunan: 80% data pelatihan, 10% data validasi, 

dan 10% data test. 

2.3. Modify 

Tahap modifikasi adalah tahap persiapan data intensif untuk pemodelan. Berikut merupakan tahap-tahap modify. 

2.3.1 Data Labelling  

Proses ini melibatkan pembuatan mask segmentasi biner secara manual menggunakan Adobe Photoshop. Proses 

ini sangat penting untuk supervised learning. Dua set mask terpisah dibuat untuk setiap gambar asli: 

• Ground Truth Pipa: Menandai area yang merepresentasikan aset (piksel putih) terhadap latar belakang (piksel 

hitam). 

• Ground Truth Korosi: Menandai area yang secara spesifik teridentifikasi sebagai korosi (piksel putih) terhadap 

latar belakang (piksel hitam). Pemisahan ini sangat penting untuk melatih model pada dua tugas segmentasi 

yang berbeda. 

 
(a) 

 
(b) 

 
(c) 

Gambar 2. Label Pipa dan Korosi 

Gambar 2 mengilustrasikan proses data labelling. (a) adalah citra asli pipa berkarat, (b) merupakan ground truth 

biner yang menandai aset pipa utuh, dan (c) merupakan ground truth biner untuk area korosi. 

2.3.2 Augmentasi Data 

Untuk mengatasi jumlah sampel data yang relatif kecil dan meningkatkan kemampuan generalisasi model, teknik 

augmentasi data diterapkan secara ekstensif pada himpunan data train dan validation. Augmentasi yang dilakukan 

meliputi Rotasi, Flip Horizontal dan Vertikal, dan penyesuaian Hue serta Saturation. Berikut merupakan tampilan 

dari Augmentasi Gambar yang dilakukan. 

 
Gambar 3. Augmentasi Rotasi 
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Bisa dilihat pada gambar 3 yang menampilkan proses augmentasi rotasi yang diterapkan secara konsisten pada 

gambar asli, mask aset, dan mask korosi. Teknik ini memutar gambar dan mask secara bersamaan dengan berbagai 

sudut diantara nya 30°, 45°, 60°, dan 90° untuk meningkatkan variasi data train. 

 
Gambar 4. Augmentasi Flip 

Bisa dilihat pada gambar 4. menampilkan proses augmentasi flip yang diterapkan secara konsisten pada gambar 

asli, mask aset, dan mask korosi. Teknik ini membalik gambar dan mask secara bersamaan, baik secara horizontal 

maupun vertikal, untuk meningkatkan variasi data train. 

 
Gambar 5. Augmentasi Saturasi dan Hue 

Bisa dilihat pada gambar 5. menampilkan proses augmentasi saturasi dan hue yang diterapkan hanya pada gambar 

asli, sementara mask aset dan mask korosi tetap tidak berubah. Teknik ini mengubah properti warna gambar 

dengan berbagai nilai, seperti penyesuaian hue sebesar +10 dan -10 dan faktor saturasi 0.5, 1.0, 1.5, dan 2.0, untuk 

meningkatkan variasi data train. 

2.3.3 Preprocessing 

Tahap pra-pemrosesan data merupakan langkah krusial dalam fase Modify untuk memastikan kualitas, konsistensi, 

dan keseragaman data sebelum dilatih ke model. Proses ini sangat penting untuk mengoptimalkan kinerja arsitektur 

deep learning. Langkah-langkah utama yang dilakukan dalam pra-pemrosesan dijabarkan sebagai berikut ini. 
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• Normalisasi Nilai Piksel: Nilai piksel pada gambar asli (RGB) dinormalisasi ke dalam rentang [0, 1]. Hal 

ini dicapai dengan membagi setiap nilai intensitas piksel (yang awalnya dalam rentang [0, 255]) dengan 

255. Normalisasi ini merupakan langkah standar untuk menstabilkan dan mempercepat konvergensi 

selama proses pelatihan model. 

• Standarisasi Format File: Untuk menjamin kompatibilitas dan keseragaman dataset, semua file gambar 

dan mask dikonversi dan disimpan dalam format .jpg. Proses konversi ini dilakukan secara terprogram 

menggunakan library shutil. 

• One-Hot Encoding: Sebagai langkah akhir dalam persiapan label, mask biner yang telah diproses 

kemudian dikonversi menggunakan one-hot encoding. Ini dilakukan untuk mengubah representasi label 

menjadi format yang sesuai dengan arsitektur output model dan fungsi loss yang digunakan. 

2.4 Model 

Pada tahap ini, dilakukan pembangunan dan pelatihan dua arsitektur deep learning. Pemilihan kedua arsitektur ini 

didasarkan pada studi kasus serupa dari penelitian terdahulu. Berikut adalah dua arsitektur yang digunakan. 

2.4.1 U-Net 

Model U-Net yang digunakan mengadopsi arsitektur encoder-decoder simetris standar. Arsitektur ini dirancang 

dengan skip-connections yang menggabungkan fitur resolusi tinggi dari encoder ke decoder, yang secara teoretis 

ideal untuk pemulihan detail spasial yang presisi [4]. 

 
Gambar 6. Arsitektur U-Net 

Implementasi dari arsitektur yang diilustrasikan pada Gambar 6 tersebut dikonfigurasi menggunakan serangkaian 

parameter spesifik selama proses pelatihan. Untuk Parameter tuning nya bisa dilihat pada Tabel 1 berikut. 

Tabel 1. Parameter Model U-Net 

Parameter Deskripsi 

Batch Size 8 

Input Size 256x256 

Optimizer Adam 

Learning Rate 0.0001 

Activation Function ReLU dan Sigmoid 

Early Stopping Val_loss dengan 20 epoch 

Kernel Size 3x3 dan 1x1 untuk output layer 

Number of Filters 64, 128, 256, 512, 1024 

Loss Function Binary Cross-Entropy 
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2.4.2 DeepLabV3+ 

Model DeepLabV3+ yang digunakan mengimplementasikan arsitektur yang lebih kompleks dengan backbone 

ResNet50 yang telah dilatih pada dataset ImageNet. Model ini memanfaatkan modul Atrous Spatial Pyramid 

Pooling (ASPP) untuk mengekstraksi fitur pada berbagai skala spasial, memungkinkannya menangkap konteks 

yang lebih baik [12]. 

 
Gambar 7. Ilustrasi Arsitektur Deeplab V3+ 

Arsitektur yang diilustrasikan pada Gambar 7 tersebut diimplementasikan menggunakan serangkaian parameter 

spesifik. Untuk Parameter tuning nya bisa dilihat pada Tabel 2 berikut. 

Tabel 2. Parameter Model DeepLab V3+ 

Parameter Deskripsi 

Batch Size 8 

Input Size 256x256 

Optimizer Adam 

Learning Rate 0.0001 

Activation Function ReLU dan Sigmoid 

Early Stopping Val_loss dengan 20 epoch 

Kernel Size 1x1 dan 3x3 

Number of Filters ResNet50 (Backbone), 256 (ASSP), 48 (Fitur Low-

Level) 

Loss Function Binary Cross-Entropy 

2.5 Assess 

Tahap terakhir adalah penilaian kinerja model yang telah dilatih. Proses evaluasi ini sangat penting untuk 

mengukur seberapa baik performa model pada data test, yaitu data yang belum pernah dilihat oleh model selama 

proses pelatihan. Analisis performa model dilakukan dengan menggunakan beberapa metrik evaluasi. 

Metrik pertama adalah Pixel Accuracy, yang menilai kinerja model dalam mengklasifikasikan setiap piksel secara 

tepat. Metrik ini mengukur akurasi piksel prediksi dengan membandingkannya langsung terhadap data ground 

truth. Perhitungan Pixel Accuracy ditampilkan pada persamaan (1). 
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(1) 

Selanjutnya, Intersection over Union (IoU) digunakan sebagai metrik standar, khususnya pada kasus segmentasi 

citra. Metrik ini berfungsi untuk mengukur tingkat tumpang tindih (overlap) antara area piksel yang diprediksi 

oleh model dengan area ground truth yang sebenarnya. Perhitungan metrik IoU dapat dilihat pada persamaan (2). 

 
(2) 

Selain IoU, metrik F1-Score juga dimanfaatkan untuk mengukur performa model. Metrik ini menghitung rata-rata 

harmonik untuk menyeimbangkan antara nilai precision dan recall. Perhitungan dari metrik F1-Score ditunjukkan 

pada persamaan (3). 

 
(3) 

Metrik berikutnya adalah Waktu Komputasi, yang dicatat dalam satuan detik. Metrik ini mengukur rata-rata waktu 

inferensi yang diperlukan oleh model untuk menghasilkan satu prediksi gambar. Ini berfungsi sebagai indikator 

penting untuk menilai efisiensi komputasi dari arsitektur model. 

Terakhir, Parameter (Bobot Model) juga dihitung. Metrik ini merujuk pada jumlah total parameter (bobot) yang 

dapat dilatih di dalam model. Jumlah parameter sering digunakan sebagai proksi untuk mengukur kompleksitas 

dan ukuran model, yang berdampak pada kebutuhan memori dan kecepatan inferensi [14]. 

3. Hasil dan Diskusi 

Bagian ini menyajikan hasil implementasi alur kerja dan evaluasi performa model. Eksperimen ini memanfaatkan 

total 1.272 data. Data ini dibagi menjadi tiga bagian fungsional: (1) Data train yang terdiri dari 1.118 data yang 

dihasilkan dari augmentasi, (2) Data validation yang terdiri dari 143 data setelah diaugmentasi, dan (3) Data test 

yang terdiri dari 11 data tanpa augmentasi untuk interpretasi pada data baru. Penggunaan data Test ini bertujuan 

untuk memastikan evaluasi akhir model dilakukan secara objektif terhadap data yang belum pernah diproses 

sebelumnya sehingga pada proses training ini dilakukan hanya dengan 1261 citra. 

Pelatihan model dilakukan di Google Colaboratory menggunakan akselerator GPU NVIDIA Tesla T4 dengan 15 

GB VRAM. Training dilakukan dengan menggunakan 100 epoch dengan menggunakan dua callback diantaranya 

ReduceLROnPlateau untuk penyesuaian learning rate dinamis dan EarlyStopping dengan patience 20 epoch. 

EarlyStopping menghentikan pelatihan jika validation loss tidak membaik, yang berfungsi untuk mencegah 

oerfitting dan menyimpan model terbaik. Hasil evaluasi akurasi pada data test dirangkum dalam Tabel 3 sebagai 

berikut. 

Tabel 3 Hasil komparasi  U-Net & DeepLab V3+ 

Model Kategori Accuracy mIoU F1-Score Waktu Komputasi (s) Parameter 

DeepLabV3+ Aset 0.887 0.862 0.899 0.3738 214500 

U-Net Aset 0.652 0.735 0.791 1.1864 91120 

DeepLabV3+ Korosi 0.865 0.701 0.846 0.5008 214500 

U-Net Korosi 0.879 0.779 0.857 1.2982 91120 

Hasil penilaian mengidentifikasi dua temuan utama yang menunjukkan kinerja kontras antara kedua model. Pada 

tugas segmentasi aset, DeepLabV3+ menunjukkan keunggulan kinerja yang sangat signifikan. Model ini 

melampaui U-Net dengan mIoU 0.862 berbanding 0.735, atau selisih ~17.3%. Keunggulan telak ini kemungkinan 

besar berasal dari backbone ResNet50 pre-trained yang digunakan oleh DeepLabV3+. Fitur-fitur yang dipelajari 

dari ImageNet memberikan pemahaman kontekstual yang lebih kaya tentang objek, yang membantu model 

mengidentifikasi struktur pipa (aset) secara lebih robust dan utuh. 

𝑇𝑃 + 𝑇𝑁 
𝑃𝑖𝑥𝑒𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 

𝑇𝑃 
𝐼𝑜𝑈 = 

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 
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Sebaliknya, situasinya berbalik pada tugas segmentasi pada korosi. U-Net menunjukkan kinerja yang sedikit lebih 

baik dengan mIoU 0.779 berbanding 0.701 dengan selisih 11.1%. Keunggulan tipis ini dapat diatribusikan pada 

kekuatan desain inti U-Net, yaitu skip-connections. Fitur ini sangat efektif dalam menggabungkan fitur spasial 

resolusi rendah dengan fitur resolusi tinggi, memungkinkan model merekonstruksi batas-batas area korosi yang 

bertekstur tidak teratur dengan presisi yang sedikit lebih baik. 

Jika diposisikan dalam konteks state-of-the-art yang lebih luas, temuan ini menunjukkan kinerja yang relevan dan 

kompetitif. Keunggulan tipis U-Net pada segmentasi korosi dengan mIoU 0.779 sejalan dengan kekuatan U-Net 

dalam literatur untuk tugas presisi spasial tinggi, seperti ditunjukkan pada penelitian [8], [10], [11] untuk 

segmentasi objek berbatas kompleks. Hal ini mendukung temuan kami bahwa desain skip-connections U-Net 

efektif merekonstruksi detail batas korosi yang tidak teratur. Di sisi lain, superioritas signifikan DeepLabV3+ pada 

segmentasi aset dengan mIoU 0.862 menunjukkan kekuatan backbone pre-trained dalam memahami konteks 

gambar yang lebih luas, sebuah pendekatan yang konsisten dengan tren segmentasi area berskala besar seperti 

pada penelitian [9]. Dengan demikian, metrik yang dicapai dalam penelitian ini dapat dianggap sebagai benchmark 

yang solid untuk tugas spesifik segmentasi pipa korosi, menyoroti keunggulan DeepLabV3+ untuk konteks objek 

dan U-Net untuk lokalisasi detail. 

Selain akurasi, faktor efisiensi komputasi menjadi pembeda utama. Model U-Net membutuhkan waktu rata-rata 

sekitar 1.24 detik per gambar, sementara DeepLabV3+ secara signifikan lebih cepat dengan waktu inferensi rata-

rata hanya 0.44 detik. Hal ini menjadikan DeepLabV3+ sekitar 2.8 kali lebih efisien. Temuan ini menarik karena 

U-Net memiliki parameter yang jauh lebih sedikit dengan jumlah 91.120 dibandingkan DeepLabV3+ yang 

memiliki 214.500 parameter. Kinerja yang kontra-intuitif ini disebabkan oleh arsitektur backbone ResNet50 pada 

DeepLabV3+ yang sangat teroptimasi untuk operasi GPU, sementara operasi skip-connection pada U-Net standar 

menimbulkan overhead komputasi. 

Selanjutnya dilakukan interpretasi dengan Data Test. Untuk memudahkan interpretasi visual dan pembedaan 

antara segmentasi aset dan korosi, skema warna visualisasi ground truth diubah. Mask yang awalnya menggunakan 

format binary standar yaitu putih dan hitam, kini disesuaikan untuk mempermudah analisis. Pada hasil interpretasi 

ini, mask untuk korosi diberi warna merah dan mask untuk aset pipa diberi warna biru. Berikut merupakan gambar 

hasil intepretasi pada Gambar 8 dan 9. 

 
Gambar 8. Hasil Intepretasi Segmentasi Pipa Korosi dengan U-Net 

Gambar 8 menunjukkan hasil segmentasi U-Net, di mana mask aset berhasil menangkap struktur pipa utama 

meskipun ada beberapa area yang terlewat atau terputus. Segmentasi korosi mendeteksi sebagian besar area 

berkarat, menampilkan hasil yang menjanjikan, namun terlihat kurang presisi dan cenderung menyatu di beberapa 

bagian. 

 
Gambar 9. Hasil Intepretasi Segmentasi Pipa Korosi dengan DeepLab V3+ 
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Gambar 9 menunjukkan hasil DeepLabV3+, di mana segmentasi aset dengan warna biru berhasil mengidentifikasi 

struktur pipa utama dengan sangat baik, menghasilkan mask yang lebih utuh dan presisi. Segmentasi korosi warna 

merah juga tampak detail dan akurat dalam melokalisasi area berkarat, dengan batas-batas yang lebih tajam dan 

lebih sedikit noise. 

Analisis komparatif ini mengungkapkan trade-off yang jelas: DeepLabV3+ terbukti superior dalam 

mengidentifikasi struktur aset secara utuh, sementara U-Net standar sedikit lebih presisi dalam melokalisasi korosi 

bertekstur tidak teratur. Namun, keunggulan tipis dari U-Net tersebut dikesampingkan oleh kinerjanya yang jauh 

lebih rendah pada segmentasi aset dan waktu inferensi yang jauh lebih lambat. Ketika semua faktor dievaluasi, 

DeepLabV3+ secara jelas menawarkan profil kinerja yang lebih seimbang dan praktis. Model ini berhasil 

menggabungkan akurasi identifikasi aset yang superior dengan efisiensi komputasi yang tinggi, menjadikannya 

pilihan yang lebih robust secara keseluruhan. 

4. Kesimpulan 

Penelitian ini telah menganalisis secara komparatif arsitektur U-Net standar dan DeepLabV3+ dengan backbone 

ResNet50 untuk tugas segmentasi semantik pipa korosi. Tahap penilaian menunjukkan bahwa tidak ada satu model 

yang unggul di semua metrik, melainkan terdapat trade-off yang jelas. DeepLabV3+ terbukti secara signifikan 

lebih unggul dalam segmentasi aset dengan mIoU 0.862 dan secara drastis lebih efisien dengan waktu komputasi 

rata-rata sekitar 0.44 detik. Sementara itu, U-Net arsitektur standar menunjukkan keunggulan tipis dalam lokalisasi 

presisi untuk segmentasi korosi dengan mIoU 0.779 , namun dengan waktu komputasi yang jauh lebih tinggi yaitu 

sekitar 1.24 detik. Berdasarkan temuan ini, DeepLabV3+ direkomendasikan sebagai arsitektur yang lebih superior 

secara keseluruhan. Model ini menawarkan keseimbangan terbaik antara akurasi segmentasi aset yang tinggi, 

akurasi korosi yang kompetitif, dan efisiensi inferensi yang sangat cepat. Hal ini menjadikannya pilihan yang lebih 

praktis dan robust untuk pengembangan sistem deteksi korosi di masa depan. Berdasarkan keterbatasan dalam 

penelitian ini, beberapa arah penelitian di masa depan dapat disarankan. Pertama, untuk penerapan praktis di 

industri, studi selanjutnya dapat menerapkan analisis cost-benefit yang menyeimbangkan kriteria cost, seperti 

komputasi dan hardware, dengan kriteria benefit, seperti metrik confusion matrix yang krusial, khususnya 

precision, recall, dan F1-score. Selanjutnya, disarankan melakukan perbandingan yang lebih seimbang dengan 

menguji U-Net yang juga menggunakan backbone pre-trained, contohnya ResNet50. Hal ini bertujuan untuk 

mengisolasi dampak murni dari desain decoder, yaitu perbandingan antara skip-connections U-Net dan modul 

ASPP DeepLabV3+. Terakhir, eksplorasi model segmentasi multi-kelas tunggal yang mencakup kelas Latar 

Belakang, Aset Pipa, dan Korosi, dapat dipertimbangkan untuk menyederhanakan alur kerja inferensi dan 

berpotensi meningkatkan kinerja model secara holistik. 
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