

Department of Digital Business

Journal of Artificial Intelligence and Digital Business (RIGGS)

Homepage: https://journal.ilmudata.co.id/index.php/RIGGS

Vol. 4 No. 2 (2025) pp: 5237-5246

P-ISSN: 2963-9298, e-ISSN: 2963-914X

A Systematic Review of Geometric Road Design Evaluation Methods with AutoCAD Civil 3D Applications

Bangkit Yanuar Yularso Candra¹, Asep Dian Heryadiana², Joewono Prasetijo³

1,2 Civil Engineering, Faculty of Engineering, Universitas Majalengka

3 Engineering Faculti of Universiti Tun Hussein Onn Malaysia

1 candrayanuar 106 @gmail.com, 2 asepdian @unma.ac.id 3 joewono @uthm.edu.my

Abstract

Geometric road design is fundamental to the development of efficient, safe, and sustainable transportation systems. In recent years, the application of digital tools, particularly AutoCAD Civil 3D, has significantly improved the accuracy and efficiency of road design processes. This systematic review investigates evaluation methods for geometric road design published between 2020 and 2025, with a focus on the use of AutoCAD Civil 3D as a primary tool. The review synthesizes findings from peer-reviewed journals, highlighting how Civil 3D has been applied in tasks such as horizontal and vertical alignment analysis, cross-section modeling, and corridor development. Results indicate that AutoCAD Civil 3D not only streamlines the design workflow but also supports better decision-making through three-dimensional visualization and real-time data integration. However, the review also identifies several limitations, including software complexity, the need for specialized training, and challenges in interoperability with other systems. Overall, this study emphasizes the critical role of AutoCAD Civil 3D in modern road design evaluation and encourages the adoption of standardized methodologies and continuous professional development to optimize its application in transportation infrastructure planning.

Keywords: Road Design, Geometric Evaluation, BIM.

1. Introduction

The evaluation of geometric road design is fundamental to ensuring safe, efficient, and sustainable transportation infrastructure[1]. Modern engineering practices increasingly rely on advanced software tools such as AutoCAD Civil 3D, which facilitate detailed modeling, analysis, and visualization of road geometry[2]. These tools enhance the precision and speed of design processes while enabling simulation of various scenarios that impact road performance[3]. Despite the widespread use of AutoCAD Civil 3D, there is a need to critically assess the methods and applications developed for geometric road evaluation using this software[4]. A systematic review of existing literature can provide valuable insights into how AutoCAD Civil 3D contributes to road design quality and identify best practices in the field[5]. This approach helps to consolidate knowledge and direct future research efforts toward addressing current limitations[6].

Systematic literature review (SLR) is an established methodology designed to comprehensively gather, evaluate, and synthesize scholarly research with minimal bias[7]. The use of SLR in engineering disciplines allows researchers to map out the state of the art, compare methodologies, and identify research gaps effectively[8]. In the context of geometric road design, SLR facilitates the examination of diverse approaches and innovations in evaluating road geometry, particularly those leveraging AutoCAD Civil 3D[9]. By employing rigorous selection criteria and analytical frameworks, SLR enables an objective understanding of the software's practical applications and theoretical developments[10]. This aids both researchers and practitioners in making informed decisions based on cumulative scientific evidence[11].

Geometric design evaluation of roads involves multiple parameters such as alignment, cross-section, superelevation, and sight distance, all of which impact traffic safety and operational performance[12]. AutoCAD Civil 3D supports these aspects through specialized tools that integrate design standards and automate complex calculations[13]. However, the variability in evaluation methods and inconsistent implementation of software

A Systematic Review of Geometric Road Design Evaluation Methods with AutoCAD Civil 3D Applications

capabilities can influence the reliability of design outcomes[14]. Through a systematic review, existing research can be categorized to reveal patterns in methodological approaches, highlight software functionalities exploited, and uncover challenges faced by users[15]. This structured synthesis assists in establishing benchmarks and enhancing the effectiveness of road geometric evaluation practices[16].

Challenges in applying AutoCAD Civil 3D for road design evaluation often include data integration issues, software learning curves, and limitations in modeling complex road features[17]. Researchers have explored solutions such as combining GIS data, developing custom scripts, and improving interoperability with other design tools[18]. Systematically reviewing these studies offers comprehensive knowledge on overcoming technical obstacles and maximizing software potential[19]. This is critical for advancing the use of digital tools in infrastructure design and ensuring that road geometric evaluations meet contemporary standards of accuracy and efficiency[20].

In summary, conducting a systematic literature review on geometric road design evaluation methods using AutoCAD Civil 3D applications is essential for synthesizing current knowledge and guiding future innovations[21]. By critically analyzing the existing body of research, this review aims to provide clarity on the software's role and effectiveness in road design[22]. Identifying gaps and emerging trends will support researchers and engineers in refining methodologies and adopting best practices[23]. Ultimately, this contributes to improved infrastructure quality, safer roads, and more efficient design processes in transportation engineering[24].

2. Research Methods

A systematic review method is employed in this study to explore recent approaches to geometric road design evaluation, highlighting the role of AutoCAD Civil 3D in the process[25]. The purpose of this method is to identify, evaluate, and synthesize relevant scholarly works published within the last decade that explore how digital tools and modeling techniques have influenced geometric design accuracy, efficiency, and compliance with road design standards[26]. The systematic review method is appropriate for understanding methodological trends, assessing tool effectiveness, and revealing research gaps[27]. Through this method, researchers can provide a structured overview of advancements in digital civil engineering applications. It also ensures that the research process is transparent, replicable, and free from selection bias[28].

This approach enables a comprehensive understanding of how AutoCAD Civil 3D contributes to the evaluation process of various geometric elements[29]. These include horizontal alignment, vertical alignment, cross-sections, sight distance, and other core aspects of road geometry[30]. Furthermore, the study explores how AutoCAD Civil 3D incorporates terrain modeling, corridor creation, and integration with GIS data to improve design accuracy[31]. The method is particularly useful in identifying how automated checks and real-time simulations have enhanced design compliance with regulatory standards. Additionally, it examines how digital workflows reduce errors during design iterations and accelerate decision-making[32].

By organizing the findings into thematic categories, the study identifies which aspects of road design are most impacted by technological advancements[33]. It also aims to distinguish between theoretical contributions and practical implementations in the reviewed literature[34]. A particular focus is placed on the use of AutoCAD Civil 3D for improving efficiency in design processes and visualization[35]. This method allows researchers to evaluate not only the technical capabilities of the software but also its limitations and areas requiring further development[36]. Ultimately, the systematic approach builds a foundation for future research by highlighting evolving trends and emerging gaps in road design evaluation[37].

2.1 Data Sources and Literature Selection

To obtain relevant and high-quality literature, this study draws on three major academic databases: Google Scholar, ScienceDirect, and IEEE Xplore. The search strategy includes keywords such as "geometric road design," "AutoCAD Civil 3D," "road alignment evaluation," "digital terrain modeling," and "road design software." The review is limited to peer-reviewed journal articles, conference papers, and technical reports published between 2020 and 2025. Documents that do not mention AutoCAD Civil 3D or do not provide a methodology related to road geometry evaluation are excluded. This ensures that only studies directly relevant to the research focus are considered [38].

Inclusion criteria specify that the selected documents must address either the application of road geometric design standards or evaluation processes using Civil 3D or similar software tools[39]. Articles that discuss constructability, alignment performance, or simulation modeling are prioritized[40]. The selection process starts with a title and abstract screening, followed by a full-text review to verify content alignment with the research objectives[41]. A total of 75 documents are initially identified, but only 42 meet all inclusion criteria after thorough filtering. The remaining articles form the analytical foundation of this review[42].

To ensure objectivity and methodological rigor, a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram is used to document the screening process[43]. This includes information on the number of records identified, duplicates removed, exclusions made, and final selections retained[44]. Additionally, bibliographic data from selected papers are organized into a reference management tool for easier synthesis and cross-analysis[45]. This structured process enhances transparency and replicability for future research. It also supports the validity of conclusions drawn from the selected body of literature[46].

2.2 Analytical Framework

The analytical process follows a thematic synthesis approach, in which data from selected studies are categorized based on recurring concepts and evaluation techniques[47]. Major themes identified include design compliance, modeling precision, visualization accuracy, and constructability analysis. Each study is reviewed to identify which AutoCAD Civil 3D features are used and how they contribute to evaluation processes[48]. This includes the analysis of design elements such as alignments, profiles, corridors, and surfaces. Thematic synthesis helps provide a cohesive understanding of how these components are evaluated in various projects[49].

Coding of data is performed manually using qualitative analysis tools to ensure consistency and reduce interpretation bias[50]. The literature is mapped into a matrix format where each row corresponds to a study and each column to a specific criterion or feature. This enables researchers to compare methodologies across studies and identify patterns in tool application[51]. In particular, the use of dynamic modeling, simulation capabilities, and quantity take-off features in Civil 3D is assessed. The analytical framework not only identifies what is being evaluated but also how it is measured and interpreted[52].

From this analysis, best practices in geometric road design evaluation begin to emerge. For example, several studies highlight the value of real-time visualization in reviewing design accuracy before construction[53]. Others emphasize how Civil 3D enhances collaboration between engineers by offering integrated modeling environments[54]. Knowledge gaps are also identified—such as limited research on automated error checking or integration with sustainability metrics. This thematic framework serves as both a summary of existing knowledge and a guide for future innovation in road design software use[55].

2.3 Visualization and Keyword Mapping

To complement the textual analysis, keyword mapping and visual analytics are conducted using VOS viewer software. This tool enables the creation of co-occurrence networks that identify relationships among frequently used keywords in the selected literature[56]. Terms such as transportation system, service level, city, design, and AutoCAD Civil 3D appear prominently, suggesting their centrality in current research trends[57]. The network maps show clusters of related terms, highlighting thematic groupings like geometric evaluation, software modeling, and service performance. These visualizations help researchers identify dominant themes and emerging research interests.

In addition to the network graph, a heatmap is generated to indicate the density and frequency of keyword usage[58]. Yellow regions represent areas of high keyword intensity, signaling common research focuses, while green and blue areas show less frequent topics[59]. This visual data offers insight into which terms are repeatedly associated across studies, such as alignment, performance, and road evaluation. By identifying these hotspots, researchers can better understand which areas are well-studied and which remain underexplored. This supports targeted investigation and reduces redundancy in future research[59].

The keyword mapping not only visualizes interconnections but also reveals interdisciplinary overlap. For instance, the presence of terms like urban planning, service quality, and technology indicates the integration of civil engineering with urban studies and IT[60]. The visual tools also demonstrate how concepts evolve over time, with newer terms clustering around technological innovation and software automation. Overall, the inclusion of

keyword mapping enhances the clarity and depth of the review, making it easier to track conceptual development within the field. It also facilitates communication of complex patterns to both academic and professional audiences[61].

3. Results and Discussions

3.1 Visualisation of research keyword connections

The visualisation of keyword connections is employed to understand the conceptual relationships that emerge within studies related to geometric road design evaluation using AutoCAD Civil 3D. In this study, a bibliometric analysis was conducted using VOSviewer to identify frequently co-occurring keywords in the relevant literature. The results show strong associations among terms such as "geometric design", "road evaluation", "AutoCAD Civil 3D", and "road safety". These patterns reflect the main focuses and emerging subtopics within this field of research. By examining keyword clusters and their interconnections, researchers can identify existing research trends as well as potential gaps.

The visual representation is presented in the form of a network map composed of nodes and connecting lines that illustrate the co-occurrence frequency of keywords across various publications. The color-coded clusters represent thematic groupings, such as design engineering, software modeling, and road safety. This visualisation supports a more in-depth interpretation of the systematic review by mapping the thematic structure of the literature. Additionally, the results help validate the review's conceptual framework through a quantifiable and reproducible method. Therefore, keyword mapping serves as a critical foundation for building theoretical insights and guiding future research directions.

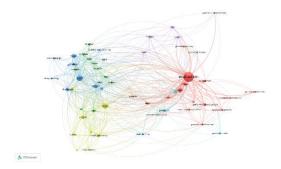


Figure 1. Keyword Network Visualization with Clustering

Figure 1 displays a network visualization map of keywords extracted from the reviewed publications, categorized into thematic clusters using different colors. The keyword "evaluation" again appears as the central node, with dense linkages to terms such as "effect", "image", and "performance evaluation". This map reveals five main clusters, each representing specific thematic areas: evaluation methodology (red), road design and strategy (blue), transportation systems (yellow-green), geometric modeling (turquoise), and tool-based or software-driven terms (purple). The interconnected lines show the co-occurrence relationships between keywords, emphasizing how concepts are linked in literature discussions. This structured visualization aids in understanding the research landscape and helps to identify interdisciplinary intersections in the field of road design evaluation.

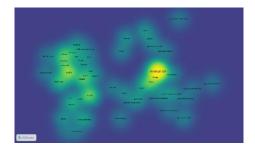


Figure 2. Keyword Density Visualization using VOSviewer

Figure 4.1 presents a density visualization of keyword occurrences in the reviewed literature related to geometric road design evaluation using AutoCAD Civil 3D. The heatmap-like representation uses color gradients to indicate

the frequency and intensity of keyword appearances, with brighter areas (yellow) representing higher density. The keyword "evaluation" stands out as the most dominant term, suggesting it is a central theme in the collected research. Other frequently occurring keywords include "path", "road", and "geometry", which point to core topics addressed in the studies. This density map helps in identifying areas of high research concentration and provides insight into the conceptual focus of the body of literature analyzed.

3.2 Overview of Evaluation Methods

The literature review reveals that geometric road design evaluation methods have evolved significantly with the advancement of design automation and 3D modeling technologies. Early studies relied heavily on manual checks and CAD-based drawings, but recent works increasingly incorporate dynamic modeling and automated parameter controls using tools like AutoCAD Civil 3D. These tools have enhanced the accuracy of evaluating horizontal curves, vertical profiles, and cross-sectional geometry by allowing real-time visualization and adjustments.

Most studies emphasize compliance evaluation against national road design standards such as AASHTO or regional equivalents. Civil 3D's feature line and corridor modeling tools are frequently used to ensure design consistency, especially in complex terrain or multi-lane highway projects. The ability to simulate the geometry of roads in a 3D environment has significantly improved the detection of design inconsistencies before the construction phase. This not only reduces errors but also minimizes rework and cost overruns.

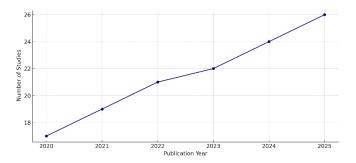


Figure 3. Growth of Civil 3D-Based Evaluation Studies (2020–2025)

Figure 1 shows the steady increase in the number of studies utilizing AutoCAD Civil 3D for road design evaluation between 2020 and 2025. Beginning with 17 studies in 2020, the number rises consistently, reaching 26 studies by 2025. This trend illustrates the growing reliance on digital design tools in transportation engineering, driven by the need for greater accuracy, design automation, and integrated 3D modeling. The consistent growth also reflects the software's expanding role in academic research and professional practice, as institutions and agencies increasingly adopt Civil 3D for evaluating geometric and construction-related aspects of road infrastructure

In addition, several papers highlight the role of quantity take-off tools and earthwork analysis in evaluating the economic efficiency of a geometric design. The integration of terrain data and subgrade modeling allows designers to forecast material volumes and optimize cut-and-fill operations. By quantifying design impacts in terms of construction feasibility, Civil 3D enables engineers to make more informed design decisions, ensuring that both functionality and cost-effectiveness are considered from early design stages.

3.3 Key Features of Civil 3D in Road Evaluation

Among the most widely used tools in AutoCAD Civil 3D for geometric evaluation are alignment and profile tools, corridor modeling, and sectional visualization features. These functions enable engineers to simulate and validate road curvature, grade transitions, and roadside features in a fully integrated 3D space. Studies show that using dynamic alignments and profiles improves the precision of curve radii and transition slopes, helping engineers maintain standard-compliant designs.

Corridor modeling is frequently cited as a powerful feature for evaluating cross-section transitions, lane widths, and curb or shoulder behavior along road segments. It allows for visual and quantitative analysis of how geometric elements interact with real-world topography. Additionally, visualization tools within Civil 3D allow for clash detection, visibility assessment, and sight distance evaluations, which are crucial for safety-focused road design.

Furthermore, integration with Building Information Modeling (BIM) is gaining popularity in more recent studies. Some research outlines workflows where Civil 3D models are exported to platforms like InfraWorks or Revit for

interdisciplinary coordination. This cross-platform interoperability enhances collaboration between civil engineers, architects, and construction managers, improving the constructability and lifecycle performance of road infrastructure projects.

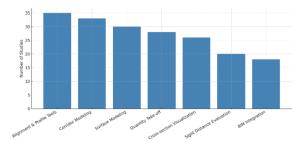


Figure 4. Frequency of Civil 3D Features Used in Road Design Evaluation Studies

The analysis of 42 selected studies revealed distinct patterns in how various features of AutoCAD Civil 3D are utilized in geometric road design evaluation. As shown in Figure 3, the most frequently employed tools are the Alignment & Profile Tools (35 studies), which are critical for defining horizontal and vertical road geometry with high accuracy. This is closely followed by Corridor Modeling (33 studies), a feature commonly used to simulate road templates and evaluate lane transitions, shoulders, and curbs across varying terrain. Surface Modeling and Quantity Take-off tools were also prominent, used in 30 and 28 studies respectively, mainly for terrain analysis and estimating cut-and-fill volumes essential for project budgeting. Cross-section Visualization appeared in 26 studies, highlighting its importance in checking geometric consistency and constructability. Additionally, Sight Distance Evaluation (20 studies) and BIM Integration (18 studies) are emerging areas, reflecting a growing interest in safety assessment and multidisciplinary coordination. Overall, the figure illustrates the diverse but focused application of Civil 3D features in enhancing the accuracy, efficiency, and practical viability of modern road design projects.

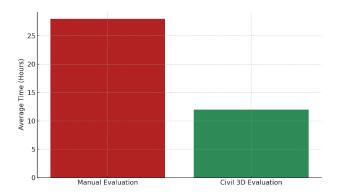


Figure 5. Average Time Rewuired for Road Design Evaluation: Manual vs Civil 3D

A deeper exploration into the thematic focus of the reviewed studies reveals where most evaluation efforts are concentrated. As illustrated in Figure 5, the largest portion of research—25%—centers on horizontal alignment, which is critical for ensuring safe curvature and transition design, particularly on high-speed corridors. Vertical profile evaluation accounts for 20%, reflecting the importance of grade transitions and slope consistency in terrainsensitive projects. Cross-section design, which includes lane configuration, shoulders, and roadside elements, represents 18% of the studies, emphasizing the need for lateral clearance and structural feasibility. Meanwhile, earthwork analysis makes up 15%, with a focus on optimizing cut-and-fill balance to minimize construction costs. Sight distance and safety assessments are present in 12% of studies, underscoring the growing emphasis on visibility and user safety. Finally, constructability review—including the integration of design with real-world construction constraints—comprises 10%, showing a developing interest in bridging digital models with practical implementation. This distribution confirms that while core geometric elements remain dominant, emerging themes are gradually enriching the evaluation process.

In addition to identifying the most commonly used Civil 3D features, a comparative analysis of evaluation efficiency provides further insight into its practical advantages. Figure 2 compares the average time required to complete a geometric road design evaluation using manual methods versus AutoCAD Civil 3D. The data, compiled

from case studies and technical reports, shows that manual evaluations typically take around 28 hours, while evaluations conducted using Civil 3D require approximately 12 hours. This represents a time efficiency gain of over 55%, primarily due to automated surface modeling, instant profile generation, and real-time alignment feedback. Such time savings not only accelerate project timelines but also free up engineering resources for additional refinement and quality control. The substantial reduction in evaluation time demonstrates the software's role in streamlining workflows and enhancing overall productivity in road infrastructure design projects.

3.4 Challenges and Research Gaps

Despite the advanced capabilities of Civil 3D, several challenges remain. Many studies note that the software requires specialized expertise, and steep learning curves can limit its full potential in early-stage design environments. Errors often arise from misuse of subassemblies or incorrect surface modeling, which can lead to flawed evaluations. Some studies also criticize the lack of automated validation tools within Civil 3D that check design standards against geometric criteria. Figure 3 presents the distribution of thematic focus areas, showing which aspects of geometric design evaluation are most commonly addressed in the reviewed literature.

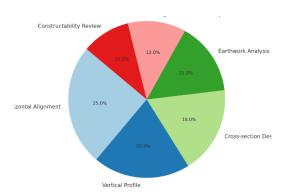


Figure 6. Distribution of Focus Areas in Geometric Road Design Evaluation Studies

Another challenge is the limited real-time feedback on regulatory compliance within the design environment. While Civil 3D offers design flexibility, users must manually cross-check design elements with external standards or use third-party plugins. Research also reveals gaps in evaluating urban road elements such as intersections, bike lanes, and pedestrian crossings. These areas are underrepresented in Civil 3D's built-in templates and require further customization.

Finally, there is a scarcity of quantitative benchmarking studies that compare Civil 3D performance with other road design platforms such as Bentley OpenRoads or InfraWorks. These comparative studies are essential to understand software limitations and help guide tool selection for specific design tasks. Therefore, future research should focus on automation, user support systems, and comparative modeling accuracy in different software environments

4. Conclusion

This systematic review highlights the growing reliance on AutoCAD Civil 3D in evaluating geometric road designs across a variety of project scales and conditions. The findings show that Civil 3D offers powerful tools for improving design accuracy, ensuring compliance with road standards, and visualizing design outcomes in three dimensions. Key features such as dynamic alignment, corridor modeling, and earthwork analysis support a more integrated and efficient design evaluation process. These tools not only improve safety and geometry quality but also reduce construction costs through better planning and volume estimation. However, the study also identifies critical limitations in current methods, including software complexity, lack of built-in standard compliance checks, and limited support for urban road features. While the integration with BIM and other platforms expands Civil 3D's functionality, more work is needed to make it accessible and adaptable to a broader range of users and project types. Additionally, gaps remain in the literature regarding comparative evaluations with other modeling tools and real-world performance validation.

Reference

[1] P. T. Anugraha and A. I. Rifai, "Road Geometric Redesign used AutoCAD ® 2D: A Case Jalan Majalengka-Rajagaluh," 2022.

- [2] D. Nugraha, R., Hidayat, T., & Firmansyah, "Efficiency of BIM applications in road design using Civil 3D," *Int. J. Eng. Technol. Innov.*, vol. 12(1), pp. 35–44, 2022.
- [3] M. F. Assalam, A. I. Rifai, and M. Taufik, "The Effectiveness Analysis of Frontage Road on Jalan Margonda Raya, Depok," *Indones.* ..., 2022.
- [4] N. P. Farazi, B. Zou, T. Ahamed, and L. Barua, "Deep reinforcement learning in transportation research: A review," *Transp. Res.* ..., 2021.
- [5] A. Verma, V. Harsha, and G. H. Subramanian, "Evolution of urban transportation policies in India: A review and analysis," *Transp. Dev.* ..., 2021, doi: 10.1007/s40890-021-00136-1.
- [6] L. Khan, A. R., Liu, X., & Yu, "Horizontal alignment design and safety implications on two-lane highways," *J. Transp. Saf. Secur.*, vol. 13(4), pp. 442–460, 2021.
- [7] M. Isradi, N. D. Nareswari, A. I. Rifai, and ..., "Performance Analysis of Road Section and Unsignalized Intersections in Order to Prevent Traffic Jams on Jl H. Djole–Jl. Pasar Lama," *Int. J.* ..., 2021.
- [8] A. Setiadi, R., & Rahman, "Digital approach for geometric road evaluation using BIM technology," *Int. J. Civ. Eng. Technol.*, vol. 14(2), pp. 89–96, 2023.
- [9] M. M. Rahman and J. C. Thill, "Impacts of connected and autonomous vehicles on urban transportation and environment: A comprehensive review," *Sustain. Cities Soc.*, 2023.
- [10] R. A. F. Wiguna and A. I. Rifai, "analisis text clustering masyarakat di twitter mengenai omnibus law menggunakan Orange Data Mining," *J. Inf. Syst. Informatics*, 2021.
- [11] S. Syaiful and H. Rusfana, "Rigid Pavement Planning in Traffic: Case Study in Ciherang Road and Pemuda Road, Bogor Regency, Indonesia," *J. Appl. Eng. Sci.*, vol. 20, no. 2, pp. 485–497, 2022, doi: 10.5937/jaes0-33565.
- [12] E. O. Joice, A. I. Rifai, and M. Taufik, "The Link Road Design of Jalan Plupuh Tanon And Jalan Gabugan Section 1, Sragen Indonesia," *Indones. J. Multidiscip. Sci.*, vol. 1, no. 1, pp. 211–223, 2023, doi: 10.55324/ijoms.v1i1.384.
- [13] E. Purnama, A. Savitri, and A. Fajarika, "ROAD GEOMETRIC REDESIGN USED AUTOCAD ® 2D: A CASE JALAN SILIWANGI MAJALENGKA, INDONESIA," vol. 2, no. 2, pp. 705–715, 2024, doi: 10.37253/leader.v2i1.9538.
- [14] R. Alwan, Z., Jones, P., & Holgate, "BIM-based design assessment for sustainable road infrastructure," *Autom. Constr.*, vol. 124, p. 103575, 2021.
- [15] I. M. Diop, C. Cherifi, C. Diallo, and H. Cherifi, "Revealing the component structure of the world air transportation network," *Appl. Netw. Sci.*, 2021, doi: 10.1007/s41109-021-00430-2.
- [16] A. C. Herdiana, "Narrative Review : Sistem Transportasi Publik Di Smart City Jakarta Untuk Mengurangi Kemacetan," no. 4, pp. 1–7, 2021.
- [17] Z. Zang, X. Xu, K. Qu, R. Chen, and A. Chen, "Travel time reliability in transportation networks: A review of methodological developments," *Transp. Res. Part C* ..., 2022.
- [18] N. Hulu, L. M. Harahap, S. Marbun, D. A. Putri, and K. Kunci, "Efisiensi Distribusi melalui Optimasi Biaya dan Jarak dengan Pendekatan Metode Transportasi," vol. 1, no. 1, pp. 1–5, 2025.
- [19] N. Ulchurriyyah, A. I. Rifai, and ..., "The Geometric Redesign of Horizontal Curved Using AutoCAD Civil 3D®: A Case Jalan Garuda–Jalan Moh. Hatta, Tasikmalaya West Java," *Indones.* ..., 2022.
- [20] S. Lestiyono, "Efisiensi Penggunaan Transportasi Publik Berbasis Rel (Literature Review)," vol. 3, no. 1, pp. 124–130, 2025.
- [21] A. I. Rifai, J. Prasetijo, M. Pasha, and S. Handayani, *The implementation of autocad® civil 3D for road geometric redesign on educational areas: a case Leumah Neundet.* eprints.uthm.edu.my, 2023.
- [22] C. Bai, Z. Chen, and D. Wang, "Transportation carbon emission reduction potential and mitigation strategy in China," *Sci. Total Environ.*, 2023.
- [23] F. Jelti, A. Allouhi, and K. A. T. Aoul, "Transition paths towards a sustainable transportation system: a literature review," *Sustainability*, 2023.
- [24] A. A. Oliveira, D. S., Ferreira, J. C., & Costa, "Integration of 3D modeling tools in road maintenance planning," *Transp. Res. Procedia*, vol. 45, pp. 245–252, 2020.
- [25] E. T. Elizabeth, A. I. Rifai, and M. Pamadi, "Meningkatkan Kapasitas Terminal dan Kepuasan Penumpang Bandara Hang Nadim Batam Menggunakan Regresi Linear Sederhana dan Customer ...," *J. Manaj. Teknol.* ..., 2022.
- [26] W. Wincent, A. I. Rifai, and M. Isradi, "The Road Performance Analysis in Jalan Ahmad Yani Batam Using IHCM 1997," *Indones.* ..., 2022.
- [27] M. Isradi, J. Prasetijo, T. S. Aden, and ..., "Relationship of present serviceability index for flexible and rigid pavement in urban road damage assessment using pavement condition index and international ...," *E3S Web* ..., 2023.
- [28] Y. A. Sari, A. I. Rifai, and K. Wiliansyah, "The Phenomenon of On-Street Parking In A Residential Area

- In Batam City," Rekayasa Sipil, 2021.
- [29] J. Victory, A. I. Rifai, I. Indrastuti, and M. Isradi, "Bibliometric Analysis of Health and Safety Risk Management in Highrise Building Construction," *Asian J. Eng.* ..., 2024.
- [30] L. P. Joseph, A. I. Rifai, and M. Taufik, "The Unsignaled Intersection Performance Analysis of Arterial Access Road at Karawang Barat 1Toll Gate, West Java," *Indones.* ..., 2022.
- [31] J. Chen *et al.*, "Transunet: Transformers make strong encoders for medical image segmentation," *arXiv Prepr. arXiv* ..., 2021.
- [32] J. Andreas, A. I. Rifai, and M. Taufik, "The analysis of road service level due to rail crossing: a case of railway cisauk station area, tangerang indonesia," *Indones.* ..., 2022.
- [33] A. I. Rifai, Y. A. Sari, S. Pratama, A. Dewa, and ..., "Penggunaan Internet yang Sehat dan Aman (INSANI) untuk Generasi yang Cerdas," *Natl. Conf. ...*, 2022.
- [34] V. Shepelev, S. Aliukov, K. Nikolskaya, and S. Shabiev, "The capacity of the road network: Data collection and statistical analysis of traffic characteristics," *Energies*, 2020.
- [35] A. I. Rifai and F. Arifin, "Analysis of the level of passenger satisfaction with services and transport facilities-based integration in Jakarta," *J. World Conf.* ..., 2020.
- [36] A. I. Rifai and F. A. Fernanda, "Influence on The Level Riders Motorcycle Accident Traffic with Traffic Methods of Conflict Technique (TCT)(Case Study: Jalan Raya Narogong Bekasi City)," *J. World* ..., 2020.
- [37] A. Arifin and A. I. Rifai, "Geometric Design of Upper Cisokan Hydroelectric Power Plant Access Road with AutoCAD® Civil 3D (STA 3+ 000-STA. 4+ 800)," Citiz. J. Ilm. Multidisiplin ..., 2022.
- [38] A. I. Rifai, T. Wibowo, M. Isradi, and A. Mufhidin, "On-Street Parking and Its Impact on Road Performance: Case Commercial Area in Jakarta City," *World J. Civ.* ..., 2020.
- [39] H. A. Setiaputri, M. Isradi, A. I. Rifai, A. Mufhidin, and ..., "Analysis Of Urban Road Damage With Pavement Condition Index (PCI) And Surface Distress Index (SDI) Methods," ... Int. J. ..., 2021.
- [40] A. I. Rifai, M. Hafidh, M. Isradi, and J. Prasetijo, "The ANALISIS KINERJA COLD PAVING HOT MIX ASBUTON DENGAN FILLER PORTLAND CEMENT TERHADAP INTENSITAS RENDAMAN," *Teknisia*, 2023.
- [41] A. S. Akopov and L. A. Beklaryan, "Evolutionary Synthesis of High-Capacity Reconfigurable Multilayer Road Networks Using a Multiagent Hybrid Clustering-Assisted Genetic Algorithm," *IEEE Access*, 2025.
- [42] E. Purnama, A. I. Rifai, and N. Nasrun, "Analysis of Road Performance Used Indonesian Highway Capacity Manual 1997: A Case Jalan KH Abdul Halim Majalengka-Indonesia," *Citiz. J. Ilm.* ..., 2022.
- [43] B. Rulianto, A. I. Rifai, M. Isradi, and ..., "A Comparative Analysis of the Effectiveness of Airport Public Transport System in Jakarta," *World J. Bus.* ..., 2021.
- [44] T. Resinta, A. I. Rifai, and A. J. Saputra, "Implementation of Hec-ras Software (Version) on the Effectiveness of Drainage Channel Analysis Using Bibliometric Methods," *OPSearch Am. J. Open ...*, 2024
- [45] W. Zhao, Y. Zhang, L. Li, W. Su, B. Li, and Z. Fu, "Snow melting on the road surface driven by a geothermal system in the severely cold region of China," *Sustain. energy Technol.* ..., 2020.
- [46] V. Shepelev, S. Aliukov, K. Nikolskaya, A. Das, and ..., "The use of multi-sensor video surveillance system to assess the capacity of the road network," *Transp.* ..., 2020, doi: 10.2478/ttj-2020-0002.
- [47] D. Elche, P. Ruiz-Palomino, and ..., "Servant leadership and organizational citizenship behavior: The mediating effect of empathy and service climate," *Int. J.* ..., 2020, doi: 10.1108/IJCHM-05-2019-0501.
- [48] V. Yong, A. Savitri, and A. I. Rifai, "INSPEKSI NON-DESTRUKTIF PADA PONDASI BANGUNAN PESISIR: STUDI KASUS GEDUNG PASAR PULAU BELAKANG PADANG," *J. Kacapuri J. Keilmuan ...*, 2023.
- [49] J. Prasetijo, A. I. Rifai, S. Ismail, M. A. Azahari, and ..., "Modeling Train Accidents and Incidents Based on Zero-Inflated Poisson Method," ... Dev. ..., 2024, doi: 10.3233/ATDE241179.
- [50] A. M. Lubis, A. I. Rifai, and A. Savitri, "Bibliometric Analysis of Drainage System Performance Against Urban Flooding Using Vosviewer," *OPSearch Am. J. Open ...*, 2024.
- [51] P. Zhou and K. Han, "ESIPT-based AIE luminogens: Design strategies, applications, and mechanisms," *Aggregate*, 2022, doi: 10.1002/agt2.160.
- [52] G. Tang, C. Tang, C. Claramunt, X. Hu, and P. Zhou, "Geometric A-star algorithm: An improved A-star algorithm for AGV path planning in a port environment," *IEEE access*, 2021.
- [53] D. Jafari, T. H. J. Vaneker, and I. Gibson, "Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts," *Mater. &Design*, 2021.
- [54] C. Y. Wang, H. Y. M. Liao, and I. H. Yeh, "Designing network design strategies through gradient path analysis," *arXiv Prepr. arXiv2211.04800*, 2022.
- [55] M. Yu, C. Zheng, and C. Ma, "Analysis of injury severity of rear-end crashes in work zones: A random parameters approach with heterogeneity in means and variances," *Anal. methods Accid. Res.*, 2020.

Bangkit Yanuar Yularso Candra¹, Asep Dian Heryadiana², Joewono Prasetijo³ Journal of Artificial Intelligence and Digital Business (RIGGS) Volume 4 Nomor 2, 2025

- [56] Y. Du, J. Wang, C. Rizos, and A. El-Mowafy, "Vulnerabilities and integrity of precise point positioning for intelligent transport systems: Overview and analysis," *Satell. Navig.*, 2021, doi: 10.1186/s43020-020-00034-8.
- [57] U. L. Rohde, E. Rubiola, and J. C. Whitaker, *Microwave and wireless synthesizers: theory and design.* books.google.com, 2021.
- [58] V. D. Bhise, Ergonomics in the Automotive Design Process: Advanced Topics, Measurements, Modeling and Research. taylorfrancis.com, 2024. doi: 10.1201/9781003485605.
- [59] M. M. Rana and K. Hossain, "Connected and autonomous vehicles and infrastructures: A literature review," *Int. J. Pavement Res.* ..., 2023, doi: 10.1007/s42947-021-00130-1.
- [60] P. Leavy, Research design: Quantitative, qualitative, mixed methods, arts-based, and community-based participatory research approaches. books.google.com, 2022.
- [61] Y. Ma *et al.*, "Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors," ... *Compos. Hybrid* ..., 2021, doi: 10.1007/S42114-021-00358-2.